Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )
Bài 2:
Câu a) Bn chia ra thành 2 TH
Khi \(x-2y=5\)và khi \(x-2y=-5\)
Câu b) thì dễ rồi đấy
Câu c) Bn vào link này https://dainghia2004.wordpress.com/2016/12/02/ti-le-thuc-day-ti-so-bang-nhau/
Ở đó có các dạng bài về tính chất dãy tỉ số = nhau đó
\(\frac{2}{3}\left(x-1\right)-x-\frac{3}{4}=1\)
<=> \(\frac{2}{3}x-\frac{2}{3}-x-\frac{3}{4}=1\)
<=> \(-\frac{1}{3}x-\frac{17}{12}=1\)
<=> \(-\frac{1}{3}x=\frac{29}{12}\)
<=> \(x=-\frac{29}{4}\)
\(\frac{5}{6}\left(x+2\right)-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(\frac{5}{6}x+\frac{5}{3}-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x+\frac{7}{6}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x=-\frac{5}{6}\)
<=> \(x=5\)
học tốt
(1-4x)^2=9^3
=>(1-4x)^2=729
=>1-8x=729
=>8x=729-1
=>8x=728
=>x=728:8
=>x=91
Vậy x=91
Học Tốt nhé
\(\left(1-4x\right)^2=9^3\)
\(\Rightarrow\left(1-4x\right)^2=729\)
\(\Rightarrow\left(1-4x\right)^2=27^2\)
\(\Rightarrow\orbr{\begin{cases}1-4x=27\\1-4x=-27\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6.5\\x=7\end{cases}}}\)
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(2^{n+1}=2^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1\)
\(\Rightarrow n=2\)
Vậy: n=2