Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2n+14⋮n+2\)
\(\Rightarrow2\left(n+2\right)+10⋮n+2\)
\(\Rightarrow10⋮n+2\)
Vì \(n\in N\Rightarrow n+2\inƯ\left(10\right)=\left\{\mp1;\mp2;\mp5;\mp10\right\}\)
Ta có bảng sau:
n+2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | -1 | -3 | 0 | -4 | 3 | -7 | 8 | -12 |
Vì \(n\in N\Rightarrow n\in\left\{0;3;8\right\}\)
Vậy \(n\in\left\{0;3;8\right\}\)
Bài giải
Ta có: 2n + 14 \(⋮\)n + 2
=> 2(n + 2) + 10 \(⋮\)n + 2
Vì 2(n + 2) + 10 \(⋮\)n + 2 và 2(n + 2) \(⋮\)n + 2
Nên 10 \(⋮\)n + 2
Suy ra n + 2 \(\in\)Ư (10)
Ư (10) = {1; 10; 2; 5}
Lập bảng:
n + 2 = 1 | n + 2 = 10 | n + 2 = 2 | n + 2 = 5 |
n = 1 - 2 | n = 10 - 2 | n = 2 - 2 | n = 5 - 2 |
n = -1 (loại vì n \(\inℕ\)) | n = 8 | n = 0 | n = 3 |
Vậy n \(\in\){8; 0; 3}
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
\(\left(2n+16\right)⋮\left(n+1\right)\)
\(\Rightarrow2\left(n+1\right)+14⋮\left(n+1\right)\)\(\Rightarrow\left(n+1\right)\inƯ\left(14\right)=\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;1;6;13\right\}\)
(2n+16)⋮(n+1)
⇒2(n+1)+14⋮(n+1)⇒(n+1)∈Ư(14)={1;−1;2;−2;7;−7;14;−14}
Do n∈N
⇒n∈{0;1;6;13}
Vì 17 chia hết cho 2n+1 và n là số tự nhiên nên 2n+1 là ước của 17
=> 2n+1 thuộc {1;17}
=> n thuộc {0;8}
1) Có: \(2n+7=2(n+1)+5\)
Mà \(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
Vậy \(n\in\left\{0;4\right\}\) thoả mãn
2) Có: \(n+6=\left(n+2\right)+4\)
Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)
\(\Rightarrow+n+2=4\Rightarrow n=2\)
\(+n+2=2\Rightarrow n=0\)
\(+n+2=1\Rightarrow n=-1\)
Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)
_Thi tốt_
có 2n+1 chia hết cho n+1
=> n+n+1 chia hết cho n+1
=>n+1+n+1-1 chia hết cho n+1
=>2.[n+1] chia hết cho n+1
mà 2.[n+1] chia hết cho n+1
=> -1 chia hết cho n+1
=>n+1 thuộc Ư[-1]
=>n+1 thuộc {1 và -1}
=>n thuộc {0 và -2}
Vậy n thuộc {0 va -2}
N=1 hoặc 3
cho mik lời giải ik