Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
Ta có :3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3.(n - 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Ta có : 8 : n - 2
<=> n - 2 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
n - 2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 20 |
3n+2 chia hết cho n-1
ta có: 3n+2=3n-3+5=3(n-1)+5
Vì n-1 chia hết cho n-1
suy ra 5 chia hết cho n-1
suy ra n-1 thuộc bội của 5 =1,-1,5,-5
Rồi bạn tự giải ra từng trường hợp nhé !
a/ \(n+2⋮n+1\)
\(\left(n+1\right)+1⋮n+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)
b/ \(3n+2⋮n-1\)
\(3n-3+5⋮n-1\)
\(3\left(n-1\right)+5⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)
Vậy \(n\in\left\{2;0;6;-4\right\}\)
c/ 2n - 1 là ước của 3n + 2
\(\Rightarrow3n+2⋮2n-1\)
\(\Rightarrow6n+4⋮2n-1\)
\(\Rightarrow6n-3+7⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)
Vì \(3\left(2n-1\right)⋮2n-1\)
\(\Rightarrow7⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)
Vậy \(n\in\left\{1;0;4;-3\right\}\)
hok tốt!!
a) Ta có:
\(n^2+3n+2\)
\(=n^2+n+2n+2\)
\(=n\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n+2\right)\)
Vì \(n+1⋮n+1\)
\(\Rightarrow n+2⋮n+1\)
Ta có:
\(n+2=n+1+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)
Vậy \(n=0\)
a) Vì 1-2n là Ư(3n+2)
\(\Rightarrow\)3n+2 \(⋮\) 1-2n
\(\Rightarrow\)-3n-2 \(⋮\) 2n-1
\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1
\(\Rightarrow\)6n+4 \(⋮\)2n-1
\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1
\(\Rightarrow\)7 \(⋮\) 2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(7)
Ta có:
Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
2n-1 | -1 | 1 | -7 | 7 |
n | 0 | 1 | -3 | 4 |
Vậy n \(\in\){0;1;-3;4}
b) 5n+1 \(⋮\)2n-3
\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3
\(\Leftrightarrow\)10n+2 \(⋮\)2n-3
\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3
\(\Leftrightarrow\)17 \(⋮\)2n-3
\(\Rightarrow\)2n-3 \(\in\)Ư(17)
Ta có:
Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}
Lập bảng:
2n-3 | -1 | 1 | -17 | 17 |
n | 1 | 2 | -7 | 10 |
Vậy n \(\in\){1;2;-7;10}
3n+2=2n-1+n+3
mà 2n-1 chia hết cho 2n-1
=>n+3 chia hết cho 2n-1
=> n+3=2n-1