Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+7 chia hết cho 3n-1
3(2n+7) chia hết cho 3n-1
6n+21 chia hết cho 3n-1
6n+21=3(n-1)+24
Vì 3(n-1) chia hết cho 3n-1
Vậy 24 chia hết cho 3n-1
3n-1 thuộc ước của 24
Rồi cậu tự lệt kê ra
câu sau cũng làm giống vậy
Đề sai nhé bạn.
2n+1 không thể là ước của 3n+4 và đề cho là ucln của 3n+4 ???
Sửa đề r mình giải cho
Ai bt Địa ko giải hộ mìk ạ chiều mình thi rồi T.T
Câu 1 : Hãy thử suy đoán xem nhiệt độ ngày đêm sẽ diễn biến ntn , nếu giả sử Trái đất :
a) Quay chậm lại 24h thành 36h
b) Quay nhanh hơn 24h thành 36h
c) Ngừng quay
Ai nhanh mik giúp mìh vs ạ ...
\(1.3n+1\inƯ\left(10\right)\)
Ta lập bảng xét giá trị
3n+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
3n | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
n | 0 | -2/3 | 1/3 | -1 | 4/3 | -2 | 3 | -11/3 |
\(2.13⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta lập bảng xét g trị
3n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2/3 | 4 | -14/3 |
\(3.2n+8⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 | 7 | -7 |
2n | 0 | -2 | 6 | -8 |
n | 0 | -1 | 3 | -4 |
\(4.6n+6⋮2n+1\)
\(\Rightarrow6n+3+1⋮2n+1\)
\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
a) Theo bài ra ta có : 3n + 5 chia hết cho 2n + 1 => 2(3n + 5) chia hết cho 3(2n + 1)
=> 2(3n + 5) - 3(2n + 1) chia hết cho 2n + 1
=> 6n + 10 - 6n - 3 chia hết cho 2n + 1
=>7 chia hết cho 2n + 1
=> 2n +1 thuộc Ư(7)={1;7}
Ta có : 2n + 1 = 1 => n = 0
2n + 1 = 7 => n = 3
Vậy n= 0 hoặc n= 3
b) Theo bài ra ta có : 3n +1 chia hết cho 2n - 1 => 2(3n +1) chia hết cho 3(2n - 1)
=> 3(2n - 1) - 2(3n +1) chia hết cho 2n -1
=> 6n - 3 - 6n -2 chia hết cho 2n -1
=> 1 chia hết cho 2n - 1
=> 2n - 1 = 1
Ta có : 2n - 1 = 1 => n = 1
Vậy n = 1
=>
2n + 1⋮3n + 1
=> 3 (2n + 1)⋮3n + 1
=> 6n + 3⋮3n + 1
=> 2 (3n + 1) + 1⋮ 3n + 1
Vì 2(3n + 1) + 1⋮3n + 1 mà 2(3n + 1)⋮3n + 1 nên 1⋮3n + 1
=> 3n + 1ϵ Ư(1) = {1;-1}
=> n = 0
Vậy n = 0