![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1
\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)
\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)
Vậy GTNN của P=3
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) \(\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Rightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\)
\(\Rightarrow x=y=\frac{1}{2}\Rightarrow\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1^{2018}=1\)
Mình làm theo \(x,y\in Z\)
Ta có\(2\left(\frac{1}{x}+\frac{1}{y}\right)=1-\frac{1}{xy}\)
\(\Leftrightarrow\frac{2\left(x+y\right)}{xy}=\frac{xy-1}{xy}\)
\(\Leftrightarrow2\left(x+y\right)=xy-1\)
\(\Leftrightarrow2x+2y=xy-1\)
\(\Leftrightarrow xy-2x-2y=1\)
\(\Leftrightarrow x\left(y-2\right)-\left(2y-4\right)=1+4\)
\(\Leftrightarrow x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=5\)
\(\Leftrightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau: