K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

a)

Goị 3 số chẵn liên tiếp đó lần lượt là 2k; 2k + 2; 2k + 4 

Ta có: 2k + (2k + 2) + (2k + 4)

= 2k + 2k + 2 + 2k + 4

= 6k + 6 

Vì 6k \(⋮\)6 ; 6 \(⋮\)6 => 2k + (2k + 2) + (2k + 4) \(⋮\)6 => Tổng 3 số chẵn liên tiếp chia hết cho 6 (dpcm)

b) ab + ba

= a0 + b + b0 + a

= (a0 + a) + (bo + b)

= aa + bb 

aa \(⋮\)11 ; bb \(⋮\)11 =>  aa + bb \(⋮\)11 => ab + ba \(⋮\)11 (dpcm)

c) 

+> Vì a + 4b \(⋮\)13 => 10(a + 4b)  \(⋮\)13

=> 10a + 40 b  \(⋮\)13

=> 10a + b + 39b  \(⋮\)13

Mà 39b  \(⋮\)13 => 10a + b  \(⋮\)13 (dpcm)

+> Vì 10a + b \(⋮\)13 => 4(10a + b)  \(⋮\)13

=> 40a + 4b  \(⋮\)13

=> 39a + a + 4b  \(⋮\)13

Mà 39a  \(⋮\)13 => a + 4b  \(⋮\)13 (dpcm)

16 tháng 12 2018

\(Taco:\hept{\begin{cases}a+4b⋮13\\13a+13b⋮13\end{cases}}\Rightarrow13a+13b-3\left(a+4b\right)⋮13\Rightarrow10a+b⋮13\)

26 tháng 10 2017

vì 39 chia hết cho 13 suy ra 39a chia hết cho 13

mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13

suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)

vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13

k cho mik nha

23 tháng 11 2016

Đặt A = a + 4b; B = 10a + b

Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)

= 10a + 40b - 10a - b

= 39b

Do \(A⋮13\Rightarrow10A⋮13\)

\(39b⋮13\) nên B = \(10a+b⋮13\left(đpcm\right)\)

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

30 tháng 11 2018

ab = ab

ba = ba

30 tháng 11 2018

* * *

câu a hình như thiếu đề

b) ab+ba

= 10a+b+10b+a

= 11a + 11b (Phần sau tự c/m vì nó dễ)

c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận

* * *

a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )

Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)

= a+a+1+a+2+a+3+a+4

= 5a +( 1+2+3+4)

= 5a + 10 (Phần sau tự c/m)

b)tương tự câu a, nhưng kết quả cuối  = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)

Hok tốt!!!! ^_^

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

1 tháng 11 2015

thui tui di bệnh viện đây

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk