Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghiệm là:
\(\hept{\begin{cases}x=6\\y=2\end{cases}}\)thảo mãn
P/s: Mk ko chắc đâu nhé
Rút x ở phương trình thứ hai, rồi thay vào phương trình thứ nhất để tìm y.
Từ phương trình thứ hai ta có:
\(x=-3+4y\) ( * )
Thay x vào phương trình thứ nhất ta có:
\(4\left(-3+4y\right)-5y=-12\)
Giải ra ta được
\(y=0\)
Thay y vào (*) ta tìm x:
\(x=-3+4.0\)
\(x=-3\)
Vậy nghiệm của hệ phương trình là:
\(\hept{\begin{cases}x=-3\\y=0\end{cases}}\)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
a) Hpt có nghiệm duy nhất khi \(m\ne3;m\ne4\)
Hpt có vô số nghiệm khi \(\hept{\begin{cases}m=3\\m=4\end{cases}}\)(vô lí). Vậy hệ không thể có vô số nghiệm
b) \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(1-y\right)+my=4\\x=1-y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-3\right)y=1\\x=1-y\end{cases}}\)
\(\cdot m=3\Rightarrow\hept{\begin{cases}0=1\\x=1-y\end{cases}}\)(vô lí)
\(\cdot m>3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}>0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)
Để \(x< 0\)thì \(\frac{m-4}{m-3}< 0\). Mà \(m-3>0\Leftrightarrow m>3\)nên \(m-4< 0\Leftrightarrow m< 4\)
\(\Rightarrow3< m< 4\)
\(\cdot m< 3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}< 0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)(loại do \(y< 0\))
Vậy \(3< m< 4\)thì thỏa ycbt