Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(3x-1)(3x+1)(2x+3)=0
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)
=>2x-1/3=19/12 hoặc 2x-1/3=-19/12
=>2x=23/12 hoặc 2x=-15/12=-5/4
=>x=23/24 hoặc x=-5/8
d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)
=>-5/6x=-3/2
=>x=3/2:5/6=3/2*6/5=18/10=9/5
e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4
=>2/5x=5/4 hoặc 2/5x=-1/4
=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8
f: =>14x-21=9x+6
=>5x=27
=>x=27/5
h: =>(2/3)^2x+1=(2/3)^27
=>2x+1=27
=>x=13
i: =>5^3x*(2+5^2)=3375
=>5^3x=125
=>3x=3
=>x=1
a) \(\dfrac{3}{4}-\dfrac{1}{2}x=-\dfrac{1}{4}\)
\(\Leftrightarrow3-2x=-1\)
\(\Leftrightarrow-2x=-1-3\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b) \(1\dfrac{2}{3}x+0,2=x-\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{5}{3}x+\dfrac{1}{5}=x-\dfrac{7}{8}\)
\(\Leftrightarrow200x+24=120x-105\)
\(\Leftrightarrow80x=-129\)
\(\Leftrightarrow x=-\dfrac{129}{80}\)
Vậy \(x=-\dfrac{129}{80}\)
c) \(\dfrac{3}{4}-\left|x+0,5\right|=\dfrac{1}{5}\)
\(\Leftrightarrow-\left|x+0,5\right|=\dfrac{1}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow-\left|x+0,5\right|=-\dfrac{11}{20}\)
\(\Leftrightarrow\left|x+0,5\right|=\dfrac{11}{20}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+0,5=\dfrac{11}{20}\\x+0,5=-\dfrac{11}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{20}\\x=-\dfrac{21}{20}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{21}{20};x_2=\dfrac{1}{20}\)
d) \(\left(x+0,2\right)^2+0,75=1\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2+\dfrac{3}{4}=1\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=1-\dfrac{3}{4}\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow x+\dfrac{1}{5}=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{1}{2}\\x+\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{7}{10};x_2=\dfrac{3}{10}\)
a, \(\dfrac{3}{4}-\dfrac{1}{2}x=-\dfrac{1}{4}\)
=>\(-\dfrac{1}{2}x=-\dfrac{1}{4}-\dfrac{3}{4}\)
=>\(-\dfrac{1}{2}x=-1\)
=>\(x=-1:(-\dfrac{1}{2})\)
=>\(x=2\)
vậy ...........
b,\(1\dfrac{2}{3}x+0,2=x-\dfrac{7}{8}\)
=>\(\dfrac{5}{3}x+0,2=x-\dfrac{7}{8}\)
=>\(\dfrac{5}{3}x-x=-\dfrac{7}{8}-0,2\)
=>\(\dfrac{2}{3}x=-\dfrac{43}{40}\)
=>\(x=-\dfrac{43}{40}:\dfrac{2}{3}\)
=>\(x=-\dfrac{192}{80}\)
vậy...................
c,\(\dfrac{3}{4}-\left|x+0,5\right|=\dfrac{1}{5}\)
=>\(-\left|x+0,5\right|=\dfrac{1}{5}-\dfrac{3}{4}\)
=>\(-\left|x+0,5\right|=-\dfrac{11}{20}\)
=>\(\left|x+0,5\right|=\dfrac{11}{20}\)
=>\(\left[{}\begin{matrix}x+0.5=\dfrac{11}{20}\\x+0,5=-\dfrac{11}{20}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{20}\\x=-\dfrac{21}{20}\end{matrix}\right.\)
vậy ....... hoặc.....
d,\((x+0,2)^2+0,75=1\)
=>\(\left(x+0,2\right)^2=1-0,75\)
=>\(\left(x+0,2\right)^2=0,25\)
=>\(\left[{}\begin{matrix}x+0,2=0,5\\x+0,2=-0,5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0,3\\x=-0,7\end{matrix}\right.\)
vậy..........................
HỌC TỐT NHA !!!!!
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
Các câu đúng: b,e
Các câu sai: a, c, d; f.
a) \(\left(-5\right)^2.\left(-5\right)^3=\left(-5\right)^5\);
c) \(\left(0,2\right)^{10}:\left(0,2\right)^5=\left(0,2\right)^{10-5}=0,2^5\);
d) \(\left[\left(-\dfrac{1}{7}\right)^2\right]^4=\left(-\dfrac{1}{7}\right)^{2.4}=\left(-\dfrac{1}{7}\right)^8\)
f \(\dfrac{8^{10}}{4^8}=\dfrac{\left(2^3\right)^5}{\left(2^2\right)^8}=\dfrac{2^{15}}{2^{16}}=\dfrac{1}{2}\)
a/ \(\dfrac{x+1}{2}=\dfrac{2x+3}{5}\)
\(\Leftrightarrow5\left(x+1\right)=2\left(2x+3\right)\)
\(\Leftrightarrow5x+5=4x+6\)
\(\Leftrightarrow5x-4x=6-5\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ...
b/ \(\left|x-1\right|+3\left|y+1\right|+\left|z+2\right|=0\)
Mà với \(\forall x;y;z\) ta có :
\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\3\left|y+1\right|\ge0\\\left|z+2\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\3\left|y+1\right|=0\\\left|z+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\z+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)
Vậy ...
c/ \(\dfrac{x-2}{4}=\dfrac{5-3x}{4}\)
\(\Leftrightarrow x-2=5-3x\)
\(\Rightarrow x+3x=5+2\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy ......
d/ \(\dfrac{x+2}{4}=\dfrac{4}{x+2}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)=16\)
\(\Leftrightarrow\left(x+2\right)^2=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy ...
e/ \(\dfrac{x-1}{5}=\dfrac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-100\)
\(\Leftrightarrow\left(x-1\right)^2=-100\)
Lại có : \(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\) k tồn tại x
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
\(\dfrac{2}{3}\left(x+1\right)-\dfrac{4}{5}x=0\\ \dfrac{2}{3}x+\dfrac{2}{3}-\dfrac{4}{5}x=0\\ \dfrac{2}{3}x-\dfrac{4}{5}x=\dfrac{-2}{3}\\ x\left(\dfrac{2}{3}-\dfrac{4}{5}\right)=\dfrac{-2}{3}\\ \dfrac{-2}{15}x=\dfrac{-2}{3}\\ x=5\)
\(\left|x+0,75\right|=\dfrac{3}{4}\\ \Rightarrow\left[{}\begin{matrix}x+0,75=\dfrac{3}{4}\\x+0,75=\dfrac{-3}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{3}{4}\\x+\dfrac{3}{4}=\dfrac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)
a) \(\dfrac{2}{3}\left(x+1\right)-\dfrac{4}{5}x=0\Leftrightarrow\dfrac{2}{3}x+\dfrac{2}{3}-\dfrac{4}{5}x=0\Leftrightarrow\dfrac{-2}{15}x+\dfrac{2}{3}=0\)
\(\Leftrightarrow\dfrac{2}{15}x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{\dfrac{2}{3}}{\dfrac{2}{15}}=5\) vậy \(x=5\)
b) \(\left|x+0,75\right|=\dfrac{3}{4}\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{3}{4}\)
th1: \(x+\dfrac{3}{4}\ge0\Leftrightarrow x\ge\dfrac{-3}{4}\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{3}{4}\Leftrightarrow x+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x=0\left(tmđk\right)\)
th2: \(x+\dfrac{3}{4}< 0\Leftrightarrow x< \dfrac{-3}{4}\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{3}{4}\Leftrightarrow-\left(x+\dfrac{3}{4}\right)=\dfrac{3}{4}\Leftrightarrow-x-\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-3}{4}-\dfrac{3}{4}=\dfrac{-6}{4}=\dfrac{-3}{2}\left(tmđk\right)\)
vậy \(x=0;x=\dfrac{-3}{2}\)