Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(27x^3+27x^2+9x+1=64\)
\(\Rightarrow27x^3+27x^2+9x-63=0\)
\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)
\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)
\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)
Mà ta có:
\(3x^2+6x+7\)
\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)
\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)
\(=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow3x^2+6x+7\) vô nghiệm
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Rightarrow12x-8=4\)
\(\Rightarrow12x=12\)
\(\Rightarrow x=1\)
c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)
\(\Rightarrow3x-22=2\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=8\)
1.
<=> 7 - 2x - 4 = -x - 4
<=> -2x + x = -4 -7 + 4
<=> -x = -7
<=> x = 7
Vậy S = { 7 }
2.
<=> \(\frac{2\left(3x-1\right)}{6}\)= \(\frac{3\left(2-x\right)}{6}\)
<=> 2( 3x - 1 ) = 3( 2 - x )
<=> 6x -2 = 6 - 3x
<=> 6x + 3x = 6 + 2
<=> 9x = 8
<=> x = \(\frac{8}{9}\)
Vậy S = \(\left\{\frac{8}{9}\right\}\)
3.
<=> \(\frac{6x+10}{3}-\frac{x}{2}=5-\frac{3x+3}{4}\)
<=> \(\frac{4\left(6x+10\right)}{12}-\frac{6x}{12}=\frac{60}{12}-\frac{3\left(3x+3\right)}{12}\)
<=> 4( 6x + 10 ) - 6x = 60 - 3( 3x + 3 )
<=> 24x + 40 - 6x = 60 - 9x -9
<=> 18x + 40 = 51 - 9x
<=> 18x + 9x = 51 - 40
<=> 27x = 11
<=> x = \(\frac{11}{27}\)
Vậy S = \(\left\{\frac{11}{27}\right\}\)
<=>
1) ĐKXĐ : \(\left\{{}\begin{matrix}x^3-1\ne0\\x^3+x\ne0\\x^2+x\ne0\\3x+\left(x-1\right)^2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x-1\ne0\\x\left(x^2+1\right)\ne0\\x\left(x+1\right)\ne0\\x^2+x+1\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-1\ne0\\x\ne0\\x+1\ne0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne0\\x\ne-1\\\left(x+\frac{1}{2}\right)^2\ne-\frac{3}{4}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne\pm1\\x\ne0\end{matrix}\right.\)
2) Ta có : \(P=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{x^2-2x+1}{3x+x^2-2x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{\left(x-1\right)^2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
=> \(P=\left(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)
=> \(P=\left(\frac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)
=> \(P=1:\frac{x+1}{x^2+1}=\frac{x^2+1}{x+1}\)
- Thay P = 0 vào phương trình trên ta được :\(\frac{x^2+1}{x+1}=0\)
=> \(x^2+1=0\)
=> \(x^2=-1\) ( Vô lý )
Vậy phương trình vô nghiệm .
3) Ta có : \(\left|P\right|=1\)
=> \(\left|\frac{x^2+1}{x+1}\right|=1\)
=> \(\frac{x^2+1}{\left|x+1\right|}=1\)
=> \(\left|x+1\right|=x^2+1\)
TH1 : \(x+1\ge0\left(x\ge-1\right)\)
=> \(x+1=x^2+1\)
=> \(x^2=x\)
=> \(x=1\) ( TM )
TH2 : \(x+1< 0\left(x< -1\right)\)
=> \(-x-1=x^2+1\)
=> \(x^2+1+1+x=0\)
=> \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{7}{4}=0\)
=> \(\left(x+\frac{1}{2}\right)^2=-\frac{7}{4}\) ( Vô lý )
Vậy giá trị của x thỏa mãn là x = 1 .
\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
ĐKXD: x\(\ne\)-1,-2,-3
Ta có
\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
Chúc bạn học tốt