Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-2)+7+(-12)+17+...+(-52)+57
=[(-2)+7]+[(-12)+17]+...+[(-52)+57]
=5+5+...+5
=5.6
=30
\( 1)\sqrt[3]{{12 - x}} + \sqrt[3]{{14 + x}} = 2\\ \Leftrightarrow 12 - x + 3\sqrt[3]{{{{\left( {12 - x} \right)}^2}.\left( {14 + x} \right)}} + 3\sqrt[3]{{\left( {12 - x} \right){{\left( {14 + x} \right)}^2}}} + 14 + x = 8\\ \Leftrightarrow 3\sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}}\left( {\sqrt[3]{{12 - x}} + \sqrt[3]{{14 + x}}} \right) = - 18\\ \Leftrightarrow 3\sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}}.2 = - 18\\ \Leftrightarrow \sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}} = - 3\\ \Leftrightarrow \left( {12 - x} \right)\left( {14 + x} \right) = {\left( { - 3} \right)^3}\\ \Leftrightarrow 168 - 2x - {x^2} = - 27\\ \Leftrightarrow {x^2} + 2x - 195 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 15\\ x = 13 \end{array} \right. \)
Vậy...
1.
Đặt\(\left\{{}\begin{matrix}u=\sqrt[3]{12-x}\\v=\sqrt[3]{14+x}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3=12-x\\v^3=14+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u^3+v^3=26\\u+v=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(u+v\right)\left(u^2-uv+v^2\right)=26\\u+v=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2-uv+v^2=13\\v=2-u\end{matrix}\right.\)
\(\Rightarrow u^2-u\left(2-u\right)+\left(2-u\right)^2=13\) \(\Leftrightarrow3u^2-6u-9=0\) \(\Rightarrow\left[{}\begin{matrix}u=3\Rightarrow v=-1\\u=-1\Rightarrow v=3\end{matrix}\right.\) Tìm x.
2.ĐK: \(-40\le x\le57\)
Đặt \(\left\{{}\begin{matrix}\sqrt[4]{57-x}=u\\\sqrt[4]{x+40}=v\end{matrix}\right.\) \(\left(u,v\ge0\right)\) \(\Rightarrow\left\{{}\begin{matrix}u^4=57-x\\v^4=x+40\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=5\\u^4+v^4=97\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=25-2uv\\\left(u^2+v^2\right)^2-2u^2v^2=97\end{matrix}\right.\) \(\Rightarrow\left(25-2uv\right)^2-2u^2v^2=97\)
\(\Leftrightarrow2u^2v^2-100uv+528=0\) \(\Rightarrow\left[{}\begin{matrix}uv=44\\uv=6\end{matrix}\right.\) Kết hợp \(u+v=5\) giải 2 trường hợp.
3.
ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(x+\sqrt{17-x^2}=t\) \(\Rightarrow\frac{t^2-17}{2}=x\sqrt{17-x^2}\)
\(PT\Leftrightarrow t+\frac{t^2-17}{2}=9\) \(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\) Giải tiếp.
\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-7}{156}\)
\(\dfrac{-6}{9}+\dfrac{-12}{16}=\dfrac{-17}{12}\)
\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-7}{55}\)
\(\dfrac{-34}{37}.\dfrac{74}{-85}=\dfrac{4}{5}\)
\(\dfrac{-5}{9}:\dfrac{-7}{18}=\dfrac{10}{7}\)
Chúc bạn học tốt!!!
a) \(\left(-\dfrac{1}{39}\right)+\left(-\dfrac{1}{52}\right)=\dfrac{-4-3}{156}=-\dfrac{7}{156}\)
b) \(\left(-\dfrac{6}{9}\right)+\left(-\dfrac{12}{16}\right)=-\dfrac{6}{9}-\dfrac{12}{16}=-\dfrac{17}{12}\)
c) \(-\dfrac{2}{5}-\left(-\dfrac{3}{11}\right)=-\dfrac{2}{5}+\dfrac{3}{11}=-\dfrac{7}{55}\)
d) \(\left(-\dfrac{34}{37}\right)\cdot\left(-\dfrac{74}{85}\right)=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)
e) \(\left(-\dfrac{5}{9}\right):\left(-\dfrac{7}{18}\right)=\dfrac{5}{9}\cdot\dfrac{18}{7}=5\cdot\dfrac{2}{7}=\dfrac{10}{7}\)
a: \(\dfrac{23}{28}=\dfrac{621}{28\cdot27}\)
\(\dfrac{24}{27}=\dfrac{24\cdot28}{27\cdot28}=\dfrac{672}{27\cdot28}\)
mà 621<672
nên 23/28<24/27
b: \(\dfrac{12}{25}=\dfrac{588}{25\cdot49}\)
\(\dfrac{25}{49}=\dfrac{625}{25\cdot49}\)
mà 588<625
nên 12/25<25/49
d: 5/16=1-11/16
6/17=1-11/17
mà 11/16>11/17
nên 5/16<6/17