Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^5=-32\)
\(\Leftrightarrow\left(x-1\right)^5=\left(-2\right)^5\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-2+1\)
\(\Rightarrow x=-1\)
(x-1)5= -32
=>(x-1)5=(-2)5
=> x-1 = -2
=> x = -2 +1
=> x = -1.
Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)
Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)
Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)
\(-\frac{9}{11}< \frac{7}{a}< -\frac{9}{13}\Leftrightarrow\frac{7}{-\frac{7\cdot11}{9}}< \frac{7}{a}< \frac{7}{-\frac{7\cdot13}{9}}\)
\(\Leftrightarrow\frac{7}{-8,\left(5\right)}< \frac{7}{a}< \frac{7}{-10,\left(1\right)}\)
a nguyên nên có thể bằng -8;-9;-10.
Kết luận: có 3 số hữu tỷ có dạng 7/a lớn hơn -9/11 và nhỏ hơn -9/13.
\(\left|3-2x\right|-3=-\left(-3\right)\)
\(\Rightarrow\left|3-2x\right|=6\)
\(\Rightarrow\left[{}\begin{matrix}3-2x=6\\3-2x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\).
Ta có:
|3 - 2x| - 3 = -(-3)
|3 - 2x| - 3 = 3
|3 - 2x| = 3 + 3
|3 - 2x| = 6
=> 3 - 2x = 6 hoặc 3 - 2x = -6
TH1: 3 - 2x = 6
2x = 3 - 6
2x = -3
x = -1,5
TH2: 3 - 2x = -6
2x = 3 - (-6)
2x = 3 + 6
2x = 9
x = 4,5
Vậy x = -1,5 hoặc 4,5 là giá trị cần tìm
Câu d ) - Vì tam giác AMN là tam giác cân AM = AN
- Ta có AM - MK = AN - HN
- Mà tam giác vuông KMB = tam giác vuông HNC (chứng minh ở câu b)
- Suy ra AK = AH
- Suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - góc A : 2
- Tam giác AMN có : góc M = 180 - góc A : 2
- S
Câu d ) - Vì tam giác AMN là tam giác cân suy ra AM = AN
- Vì tam giác vuông KMB = tam giác vuông HNC suy ra KM = HN
- Ta có AM - KM = AN - HN
- Suy ra AK = AH suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - A : 2
- Tam giác AMN có : góc M = 180 độ - A :2
- Suy ra góc K = góc M ( ở vị trí đồng vị )
- Suy ra HK // MN
\(2^{600}và3^{400}\)
ƯCLN(600;400)=200
Ta có:\(2^{600}=\left(2^3\right)^{200}=8^{600}\)
\(3^{400}=\left(3^2\right)^{200}=9^{600}\)
\(\Rightarrow8^{600}< 9^{600}\)
Vậy 2600<3400
Ta có
2^600= ( 2^6)^100= 64^100
3^400= ( 3^4)^100= 81^100
Vì 64^100< 81^100
Nên 2^600< 3^400