Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/23 x 17/26 + 9/26 x 5/23
= 5/23 x(17/26 + 9/26)
= 5/23 x 1
=5/23
\(\dfrac{-5}{23}\cdot\dfrac{17}{26}+\dfrac{5}{-23}\cdot\dfrac{9}{26}\)
= \(\dfrac{-5}{23}\cdot\dfrac{17}{26}+\dfrac{-5}{23}\cdot\dfrac{9}{26}\)
= \(\dfrac{-5}{23}\left(\dfrac{17}{26}+\dfrac{9}{26}\right)\)
= \(\dfrac{-5}{23}\cdot1=\dfrac{-5}{23}\)
\(=\dfrac{9^3\left(2^3\cdot9+45\right)}{9^2\cdot9}=8\cdot9+45=117\)
Đặt : \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(\Rightarrow3A=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\)
\(\Rightarrow3A=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(\Rightarrow3A=\frac{1}{20}+\left(\frac{1}{23}-\frac{1}{23}\right)+\left(\frac{1}{26}-\frac{1}{26}\right)+...+\left(\frac{1}{77}-\frac{1}{77}\right)-\frac{1}{80}\)
\(\Rightarrow3A=\frac{1}{20}-\frac{1}{80}\)
\(\Rightarrow3A=\frac{3}{80}\)
\(\Rightarrow A=\frac{3}{80}:3\)
\(\Rightarrow A=\frac{1}{80}\)
Vì 80 > 79 nên \(\frac{1}{80}< \frac{1}{79}\)hay \(A< \frac{1}{79}\)
~ Hok tốt ~
Ta có :
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\left(\frac{3}{80}< 1\right)\)
\(\Leftrightarrow\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{3}\left(đpcm\right)\)
\(M=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77x80}\)
\(M=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(M=\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)
\(\frac{3}{80}=\frac{3x9}{80x9}=\frac{27}{720};\frac{1}{9}=\frac{1x80}{9x80}=\frac{80}{720}\)
Vì \(\frac{27}{720}< \frac{80}{720}\Rightarrow\frac{3}{80}< \frac{1}{9}\Rightarrow M< \frac{1}{9}\)
#~Will~be~Pens~#
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+\frac{1}{26\cdot29}+...+\frac{1}{77\cdot80}\)
\(< \frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+\frac{3}{26\cdot29}+...+\frac{3}{77\cdot80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< \frac{1}{79}(đpcm)\)
\(\left(-26\right)\times\left(94-23\right)-94\times\left(23-26\right)\)
\(=-1564\)
=-1564