K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

25\(x^2\) - 4y\(^2\)

= (5\(x\))\(^2\) - (2y)\(^2\)

= (5\(x-2y\)).(5\(x\) + 2y)


\(25x^2-4y^2\)

\(=\left(5x\right)^2-\left(2y\right)^2\)

=(5x-2y)(5x+2y)

7 tháng 7 2017

Tất cả dùng công thức là A2 – B2= (A-B)(A+B)

29 tháng 6 2017

1) \(4x^2+4x+1=\left(2x+1\right)^2\)

2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

3)\(-x^2+10x-25=-\left(x-5\right)^2\)

4)\(1+12x+36x^2=\left(1+6x\right)^2\)

5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)

6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

29 tháng 6 2017

bài toán iêu cầu j z ??? bn

30 tháng 7 2018

Giải:

a) \(\left(x-5\right)^2-16\)

\(=\left(x-5-4\right)\left(x-5+4\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

b) \(25-\left(3-x\right)^2\)

\(=\left(5-3+x\right)\left(5+3-x\right)\)

\(=\left(2+x\right)\left(8-x\right)\)

c) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left[7\left(y-4\right)-3\left(y+2\right)\right]\left[7\left(y-4\right)+3\left(y+2\right)\right]\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

d) \(11x+11y-x^2-xy\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(11-x\right)\left(x+y\right)\)

e) \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-8\right)\left(x-y\right)\)

Vậy ...

30 tháng 7 2018

\(\left(x-5\right)^2-16\)

\(=\left(x-5\right)^2-4^2\)

\(=\left(x-5-4\right)\left(x-5+4\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(25-\left(3-x\right)^2\)

\(=5^2-\left(3-x\right)^2\)

\(=\left(5+3-x\right)\left(5-3+x\right)\)

\(=\left(8-x\right)\left(2+x\right)\)

\(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=7^2\left(y-4\right)^2-3^2\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

23 tháng 9 2017

bài 1

a(x+y)2-(x-y)2

=[(x+y)-(x-y)][(x+y)+(x-y)]

=(x+y-x+y)(x+y+x-y)

=2y.2x

b,(3x+1)2-(x+1)2

=[(3x+1)-(x+1)][(3x+1)+(x+1)]

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

4x.(x+10

23 tháng 9 2017

bài 2

x3-0,25x=0

=>x(x2-0,25)=0

=>x=0 hoặc x2-0,25=0

=> x=0 hoặc x=\(\pm0,5\)

1 tháng 8 2018

a, 27x3 - 54x2y + 36xy2 - 8y3

=(3x)3 - 54 x2y + 36xy2 -(2y)3

=(3x - 2y)3

Thay x=4,y=6 vào biểu thức trên ta được

(3.4 - 2.6)=(12 -12)=0

Vậy với x=4 ,y=6 thì gtrị của bthức là 0

1 tháng 8 2018

a) \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3.\left(3x\right)^22y+3.3x\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

Thay x = 4 ; y = 6 vào ta được

\(=\left(3.4-2.6\right)^3\)

\(=\left(12-12\right)^3\)

\(=0\)

b) \(27x^3z^6-54x^2yz^4+36xy^2z^2-8y^3\)

\(=\left(3xz^2\right)^3-3.\left(3xz^2\right)^2.2y+3.3xz^2\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3xz^2-2y\right)^3\)

Thay x = 25 ; y = 150 ; z = 2 ta được

\(=\left(3.25.4-2.150\right)^3\)

\(=\left(300-300\right)^3\)

\(=0\)

3 tháng 11 2018

\(x^2+y^2+z^2=xy+yz+zx\)

\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Có \(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Rightarrow3.x^{2014}=3\)

\(\Rightarrow x^{2014}=1\)

\(\Rightarrow x=1\)

\(\Rightarrow x=y=z=1\)

Có: \(P=x^{25}+y^4+z^{2015}\)

\(\Rightarrow P=1^{25}+1^4+1^{2015}\)

\(P=1+1+1\)

\(P=3\)

Vậy \(P=3\)

Tham khảo nhé~

3 tháng 11 2018

Ta có: x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

=>x2014=y2014=z2014

Lại có: x2014+y2014+z2014 = 3

=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)

=>\(x=y=z=\pm1\)

Thay x,y,z vào P rồi tính

5 tháng 6 2019

1/ \(25x^2y^4+30xy^2z+9z^2=\left(5xy^2+3z\right)^2\)

2/ \(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=\left(\frac{4}{3}x+\frac{3}{2}yz^2\right)^2\)