Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) x2 - y2 - 2x + 2y = (x - y)(x + y) - (2x - 2y)
= (x - y)(x + y) - 2(x - y)
= [(x + y) - 2].(x - y)
= (x + y - 2)(x - y)
c)3a2 - 6ab + 3b2 - 12c2 = (3a2 - 6ab + 3b2) - 12c2
= 3(a2 - 2ab + b2) - 12c2
= 3[(a - b)2] - 12c2
= 3[(a - b)2 - 4c2]
= 3[(a - b)2 - (2c)2]
= 3[(a - b - c) - (a - b + c)]
= 3(a - b - c - a + b - c)
= 3(-2c)
= -6c
d)x2 - 5 + y2 + 2xy = (x2 + 2xy + y2) - 5
= (x + y)2 - 5
= (x + y)2 -(\(\sqrt{5}\))2
= (x + y - \(\sqrt{5}\)) - (x + y + \(\sqrt{5}\))
= x + y - \(\sqrt{5}\) - x - y -\(\sqrt{5}\)
= -2\(\sqrt{5}\)
e) a2 + 2ab + b2 - ac - bc = (a2 + 2ab + b2) - (ac + bc)
= (a + b)2 - c(a + b)
= [(a + b) - c].(a + b)
= (a + b - c)(a + b)
Còn câu b) và câu f) Vàng sẽ nghĩ sau :v
Tiếp câu f luôn !
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
\(1.a\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\\ =x^3+8y^3-\left(x^3-y^3\right)\\ =x^3+8y^3-x^3+y^3\\ =9y^3\)
a)x2-4x+5+y2+2y=x2-4x+4+y2+2y+1=(x-2)2+(y+1)2
b)2x2+y2-2xy+10x+25=x2-2xy+y2+x2+10x+25=(X+Y)2+(X+5)2
c)a2+2ab+5b2+4b+1=a2+2ab+b2+4b2+4b+1=(a+b)2+(2b+1)2
d)2x2+2b2+4x+4b+4=2x2+4x+2+2b2+4b+2=(\(\sqrt{2}x+\sqrt{2}\))2+(\(\sqrt{2}b+\sqrt{2}\))2
e)X4+13-6x2+4y+y2=x4-6x2+9+y2+4y+4=(x2-3)2+(y+2)2
f)-6x+9x2-8y+4y+y2+5= 9x2-6x+1+4y2-8y+4= (3x-1)2+(2y-2)2
\(x^2+4y^2-2x+4y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
bai 1. Tìm x,y sao cho
a, (3x2+1)2+2xy+y2+1=0
b,x2+2xy+4y2+4y+y2+1=0
cac ban oi giup mih. minh dang can
a, (3x2+1)2+2xy+y2+1=0
(3x2+1)2+(y+1)2=0 Vì (3x2+1)2 >=0 ; (y+1)2 >=0 với mọi x,ý
=>3x2+1=0 => 3x2=1 => x2=1/3 => x=căn 1/3
y+1=0 => y=-1
b, x2+2xy+4y2+4y+y2+1=0
(x2+2xy+y2) + (4y2+4y+1)=0
(x+y)2 + (2y+1)2=0 Vì (x+y)2 >=0 ; (2y+1)2 >=0 vói mọi x,y
=> 2y+1=0 => y=-1/2
x+y=0 => x-1/2=0 => x=1/2
a) \(25x^2-y^2+4y-4\)
\(=\left(5x\right)^2-\left(y-2\right)^2\)
\(=\left(5x-y+2\right)\left(5x+y-2\right)\)
b) \(x+2y-xy-2\)
\(=\left(x-xy\right)+\left(2y-2\right)\)
\(=x\left(1-y\right)+2\left(y-1\right)\)
\(=x\left(1-y\right)-2\left(1-y\right)\)
\(=\left(1-y\right)\left(x-2\right)\)