Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt A = \(\frac{9}{5.32}+\frac{9}{8.44}+\frac{9}{11.56}+\frac{9}{14.68}+\frac{9}{17.80}\)
\(=\frac{1}{4}\left(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+\frac{9}{14.17}+\frac{9}{17.20}\right)\)
\(=\frac{3}{4}\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{20}\right)=\frac{3}{4}\cdot\frac{3}{20}=\frac{9}{80}\)
b, Đặt B = \(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}\)
\(=\left(1+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=1+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+\frac{1}{6}-\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}=\frac{6}{7}\)
a, 42x - 6 = 1
=> 42 x = 7
=> x = 6
b, 5x + 5x + 1 +5x + 2 = 775
=> 15 x + 3 = 775
=> 15 x = 772
=> x = 772/ 15
5x+5x+1+5x+2=31
5x + 5x + 5x = 31 - 2 - 1
15x = 28
x= 28/15
1: =>25x-15-6x+12=11-5x
=>19x-3=11-5x
=>24x=14
=>x=7/12
2: =>8-12x-5+10x=4-6x
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
3\(x^2\).(5\(x\) + 1) + 6\(x^3\).(5\(x\) + 2) = 9\(x^3\) .(5\(x\) + 3)
15\(x^3\) + 3\(x^2\) + 30\(x^4\) + 12\(x^3\) = 45\(x^4\) + 27\(x^3\)
(15\(x^3\) + 12\(x^3\)) + 3\(x^2\) + 30\(x^4\) - 45\(x^4\) - 27\(x^3\) = 0
27\(x^3\) + 3\(x^2\) - 15\(x^4\) - 27\(x^3\) = 0
3\(x^2\) - 15\(x^4\) = 0
3\(x^2\).(1 - 5\(x^2\)) = 0
\(\left[{}\begin{matrix}x^2=0\\1-5x^2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\5x^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\mp\dfrac{\sqrt{5}}{5}\end{matrix}\right.\)
Em ghi đề đầy đủ, chính xác lại!
Bạn xem lại đề bài