K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

A=4/3(13/9-40/9)

A=4/3x-3

A=-4

25% của A là:-1

8 tháng 5 2018

\(A=\frac{4}{3}.\frac{13}{9}-\frac{4}{3}.\frac{40}{9}\)

\(\Rightarrow A=\frac{4}{3}.\left(\frac{13}{9}-\frac{40}{9}\right)\)

\(\Rightarrow A=\frac{4}{3}.\frac{-27}{9}\)

\(\Rightarrow A=\frac{4}{3}.\left(-3\right)\)

\(\Rightarrow A=-4\)

25% của A là : 

\(-4:4=-1\)

Vậy 25% của A là -1 

Chúc bạn học tốt !!! 

9 tháng 7 2017

(-1/9)^2000.2^2000-4/3=\(\frac{2^{2000}}{9^{2000}}-\frac{4}{3}\)=\(\frac{4^{1000}}{3^{4000}}-\frac{4.3^{3999}}{3^{4000}}\)=\(\frac{4.\left(4^{999}-3^{3999}\right)}{3^{4000}}\)

mik k chắc lám vì đb k rõ ràng

10 tháng 4 2017

3/4+1/4:x=-3

1/4:x=(-3)-3/4

1/4:x=-15/4

x=-15/4.1/4

x=-15/16

đúng nha bn

10 tháng 4 2017

3/4+3/4 : x= -3 

4/4 :x =-3

1:x =-3

x= -1/3

8 tháng 5 2019

9/4.7/17+2

=63/68+2

=63/68+136/68=199/68

1/4.3/1-21/4.13/17

=1/4.3/17-21/4.14/17

=3/68-273/68=-270/68=-135/68

2 tháng 3 2017

n + 5 chia hết cho n+1

(n+1)+4 chia hết cho n+1

Vì n+1 chia hết cho n+1

Nên 4 chia hết cho n+1

Suy ra, n+1 thuộc 1; 2; 4

Rồi sau đó, bạn tìm ra n nha.

Chúc bạn học tốt

2 tháng 3 2017

n=0 .kết bạn đi

a)Gọi ƯCLN (\(n+3;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(n+3;2n+5\))=1

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)

b)Gọi ƯCLN (\(2n+9;3n+14\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(2n+9;3n+14\))=1

\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)

c)Gọi ƯCLN(\(6n+11;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)

\(\Rightarrow4⋮d\)

\(\left(6n+15\right);\left(6n+11\right)⋮̸2\)

\(\Rightarrow d=1\)

⇒ƯCLN(\(6n+11;2n+5\))=1

\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)

d)Gọi ƯCLN(\(12n+1;30n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(12n+1;30n+2\))=1

\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

e)Gọi ƯCLN(\(21n+4;14n+3\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(21n+4;14n+3\))=1

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)

f) Gọi ƯCLN(\(2n+3;n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(2n+3;n+2\))=1

\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(n+1;3n+2\))=1

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)

3 tháng 1 2019

Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)

-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)

TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)

TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)

-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)

Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)

8 tháng 5 2018

Số sách ở giá A là:

1000x1/4=250(quyển sách)

Tổng số sách giá B và C là:

1000-250=750(quyển sách)

Ở đây ta áp dụng tìm hai số khi biết tổng và tỉ của hai số đó,số sách giá B bằng 2/3 số sách giá C nên B sẽ là 2 phần,C sẽ là 3 phần

Số sách giá B là:

750:(2+3)x2=300(quyển sách)

Số sách giá C là:

750-300=450(quyển sách)

Vậy:số sách giá A là 250 quyển

                    giá B là 300 quyển

                    giá C là 450 quyển

8 tháng 5 2018

số sách giá A là :

\(1000\times\frac{1}{4}=250\)( quyển sách )

Tổng số sách còn lại của b và c là

\(1000-250=750\)( quyển sách

Số sách giá B là :

\(750\div\left(2+3\right)\times2=300\)( quyển sách )

Số sách giá c là : 

\(300\div\frac{2}{3}=450\)( quyển sách )

                       Đ/S : giá A : 250

                               giá B : 300

                               giá c : 450

13 tháng 8 2016

A = 4 + 42 + 43 + 44 + ... + 460 (có 60 số; 60 chia hết cho 2)

A = (4 + 42) + (43 + 44) + ... + (459 + 460)

A = 4.(1 + 4) + 43.(1 + 4) + ... + 459.(1 + 4)

A = 4.5 + 43.5 + ... + 459.5

A = 5.(4 + 43 + ... + 459) chia hết cho 5

13 tháng 8 2016

cho pn 3 k nè cảm ơn pn