K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(\left(24x^5-12x^4+6x^2\right):6x^2\)

\(=\frac{24x^5-12x^4+6x^2}{6x^2}\)

\(=\frac{24x^5}{6x^2}-\frac{12x^4}{6x^2}+\frac{6x^2}{6x^2}\)

\(=4x^3-2x^2+1\)

27 tháng 10 2019

a) 3x2 .(2x2 - 3yz + x3)= 6x4 - 6x2yz +3x5

b)(24x5 - 12x4 + 6x2 ).6x2 = 144x7 - 72x6 +36x4

a) 3x2 . (2x2 - 3yz + x3)

= 3x2 . 2x2 + 3x2 . (- 3yz) + 3x2 . x3

= 6x4 + (-9x2yz) + 3x5

= 6x4 - 9x2yz + 3x5

27 tháng 7 2023

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

27 tháng 7 2023

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}

                     

            

25 tháng 7 2016

x^3-6^2+12x-8=1

(x-2)^3=1

=>x-2=1

=>x=3

Câu b tương tự nha

25 tháng 7 2023

Đề yêu cầu gì em?

25 tháng 7 2023

 

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)

\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)

\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)

5 tháng 11 2017

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)

6 tháng 12 2017

a)= 6x^2 - 9x - 6x^2 -4x =7-12x

      x = 7

b) tương tự a) ta đc: x=

7 tháng 12 2017
6x²-9x-6x²-4x=7-12x <=> -13x+=7-12x <=>x=7 Câu 2: 3x-15-2x²+10x=0 13x-15-2x²=0 2x²-3x-10x+15=0 (X-5)(2x-3)=0 X=5 hoặc x=3/2
29 tháng 10 2016

a) 6x2.(3x2 - 4x + 5) = 18x4 - 24x3 + 30x2

b) (x - 2y)(3xy + 6y2 + x) = 3x2y + 6xy2 + x2 - 6xy2 - 12y3 - 2xy = -12y3 + 3x2y - 2xy + x2

c) (18x4y3 - 24x3y4 + 12x3y3) : (-6x2y3) = -6x2y3(-3x2 + 4xy - 2x) : (-6x2y3) = 4xy - 3x2 - 2x

\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)

\(4x^2-40x+100=18x+9\)

\(4x^2-58x+91=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)

\(c,x^3+3x^2-6x-8=0\)

\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)

\(Th1:x+4=0\Leftrightarrow x=-4\)

\(Th2:x-2=0\Leftrightarrow x=2\)

\(Th3:x+1=0\Leftrightarrow x=-1\)

5 tháng 3 2020

\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)

\(< =>4x^2-40x+100=18x+9\)

\(< =>4x^2+58x+91=0\)

\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)