Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 24x3 - 4x2 - 4x - 6x2 + x + 1 = 0
=> 4x.(6x2 - x - 1) - (6x2 - x - 1) = 0
=> (6x2 - x - 1)(4x - 1) = 0
=> (6x2 - 3x + 2x - 1) (4x - 1) = 0
=> [ 3x.(2x - 1) + (2x - 1) ] . (4x - 1) = 0
=> (2x - 1)(3x + 1).(4x - 1) = 0
=> 2x - 1 = 0 => x = 1/2
hoặc 3x + 1 = 0 => x = -1/3
hoặc 4x - 1 = 0 => x = 1/4
Vậy x = 1/2 , x = -1/3 , x = 1/4
4x2+4x+1=(2x+1)(3x-2)
=>(2x+1)2=(2x+1)(3X-2)
=>(2x+1)2-(2x+1)(3x-2)=0
=>(2x+1)(2x+1-3x+2)=0
=>(2x+1)(3-x)=0
=>
- 2x+1=0
- 3-x=0
=>
- x=-0,5
- x=3
\(3x^2+x+11=0\)
\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)
=> PT vô nghiêm
\(3x^2+x+11=0\)
\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)
\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)
=> Phương Trình Vô Nghiệm
Cj lm 2 cách nha,e kham khảo cách nào cx đc.
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)
\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)
\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)
\(4x^4+16x^3+23x^2+14x+3=0\)
\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)
\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)
Tương tự như trên ....
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)
Bài 1:
b: \(x^3-4x^2+7x-6=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
=>x-2=0
hay x=2
c: \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
=>(x+1)(x+2)(2x+1)=0
hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)
d: \(2x^3-9x+2=0\)
\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)
hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)
\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)
\(=-3ab-6a^2b^2+6a^2b^2\)
= - 3ab
\(\Leftrightarrow\)2(9x2+6x+1)=(3x+1)(x-2)
\(\Leftrightarrow\)2(3x+1)2-(3x+1)(x-2)=0
\(\Leftrightarrow\)(3x+1)[2(3x+1)-(x-2)]=0
\(\Leftrightarrow\)(3x+1)(6x+2-x+2)=0
\(\Leftrightarrow\)(3x+1)(5x+4)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\\5x+4=0\Leftrightarrow5x=-4\Leftrightarrow x=\frac{-4}{5}\end{cases}}\)
2x^4-9x^3+14x^2-9x+2=0
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1
nên phân tích đc nhân tử là (x-1)
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0
<=> x=1 và 2x^3-7x^2+7x-2=0
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1)
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0
<=> x=1 và 2x^2-5x+2=0
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0
<=> (x-5/4)^2 - 9/16 = 0
<=> (x-5/4)^2 - (3/4)^2 = 0