K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

=> 24x3 - 4x2 - 4x - 6x2 + x + 1 = 0 

=> 4x.(6x2 - x - 1) - (6x2 - x - 1) = 0

=> (6x2 - x - 1)(4x - 1) = 0

=> (6x2 - 3x + 2x - 1) (4x - 1) = 0

=> [ 3x.(2x - 1) + (2x - 1) ] . (4x - 1) = 0

=> (2x - 1)(3x + 1).(4x - 1) = 0

=> 2x - 1 = 0 => x = 1/2

hoặc 3x + 1 = 0 => x = -1/3

hoặc 4x - 1 = 0 => x = 1/4

Vậy x = 1/2 , x = -1/3 , x = 1/4

17 tháng 1 2016

4x2+4x+1=(2x+1)(3x-2)

=>(2x+1)2=(2x+1)(3X-2)

=>(2x+1)2-(2x+1)(3x-2)=0

=>(2x+1)(2x+1-3x+2)=0

=>(2x+1)(3-x)=0

=>

  1. 2x+1=0
  2. 3-x=0

=>

  1. x=-0,5
  2. x=3
10 tháng 7 2019

\(3x^2+x+11=0\)

\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\) 

\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\) 

Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)

=> PT vô nghiêm

\(3x^2+x+11=0\)

\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)

\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)

\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)

=> Phương Trình Vô Nghiệm

Cj lm 2 cách nha,e kham khảo cách nào cx đc.

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)

\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)

\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)

\(4x^4+16x^3+23x^2+14x+3=0\)

\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)

\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)

Tương tự như trên .... 

8 tháng 5 2020

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)

Bài 1: 

b: \(x^3-4x^2+7x-6=0\)

\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)

=>x-2=0

hay x=2

c: \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)

=>(x+1)(x+2)(2x+1)=0

hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)

d: \(2x^3-9x+2=0\)

\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)

hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)

16 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)

\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)

\(=-3ab-6a^2b^2+6a^2b^2\)

= - 3ab

15 tháng 8 2016

HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEE!

8 tháng 2 2020

\(\Leftrightarrow\)2(9x2+6x+1)=(3x+1)(x-2)

\(\Leftrightarrow\)2(3x+1)2-(3x+1)(x-2)=0

\(\Leftrightarrow\)(3x+1)[2(3x+1)-(x-2)]=0

\(\Leftrightarrow\)(3x+1)(6x+2-x+2)=0

\(\Leftrightarrow\)(3x+1)(5x+4)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\\5x+4=0\Leftrightarrow5x=-4\Leftrightarrow x=\frac{-4}{5}\end{cases}}\)

 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0