Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(A\right)125^{80}và25^{118}\)
\(125^{80}=\left(5^3\right)^{80}=5^{3.80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{2.118}=5^{236}\)
Vì \(5^{240}>5^{236}\)nên \(125^{80}>25^{118}\)
\(\left(B\right)4^{21}và64^7\)
\(4^{21}\)giữ nguyên
\(64^7=\left(4^3\right)^7=4^{3.7}=4^{21}\)
Vì \(4^{21}=4^{21}\)nên \(4^{21}=64^7\)
dễ mà bạn,mình chưa học mà mình biết rồi nè.
a, \(2\cdot2^2\cdot2^3\cdot2^4\cdot...\cdot2^x=1024\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{10}\Leftrightarrow1+2+3+4+...+x=10\)
\(\Rightarrow\left(x+1\right)x\div2=10\Rightarrow\left(x+1\right)x=20\)
Vì : ( x + 1 ) x là hai số tự nhiên liên tiếp \(\Rightarrow x=4\in Z\)
Vậy x = 4
b, \(9.27< 3^x< 243\Leftrightarrow3^5< 3^x< 3^5\)
\(\Rightarrow5< x< 5\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
C= [1-\(\frac{1}{2}\)]+[1-\(\frac{1}{4}\)]+.....+[1-\(\frac{1}{2014}\)]
C=\(\frac{1}{2}\)+ \(\frac{3}{4}\)+.........+\(\frac{2013}{2014}\)
C= \(\frac{1}{2}\)-\(\frac{1}{2}\)+\(\frac{5}{4}\)-\(\frac{5}{4}\)+\(\frac{25}{12}\)-\(\frac{25}{12}\)+\(\frac{48}{49}\)-\(\frac{48}{49}\)+......+\(\frac{4056195}{4056196}\)
C=\(\frac{4056195}{4056196}\)
\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^{10}}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
10 số 1
\(K=10-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt B
\(B=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2B-B=1-\frac{1}{2^{10}}\)
\(B=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(K=10-\frac{1023}{1024}=\frac{9217}{1024}\)
Số to wa ak
\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(K=10-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(2K=20-\left(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\right)\)
\(\frac{x-1}{2018}+\frac{x-7}{503}=\frac{x-3}{1008}+\frac{x-9}{670}\)
\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-7}{503}-4=\frac{x-3}{1008}-2+\frac{x-9}{670}-3\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{503}-\frac{1}{1008}-\frac{1}{670}\right)=0\)
\(\Rightarrow x=2019\)
#CBHT
Đặt A =1/2+1/4+1/8+...+1/1024
2A= 1+1/2+1/4+...+1/512
A= 1-1/1024
=>A<1hay ...
Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)
\(\Rightarrow3A-A=3^{2017}-3\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow A=\frac{3^{2017}-3}{2}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)
\(\Rightarrow2B-B=1-\frac{1}{1024}\)
\(\Rightarrow B=\frac{1023}{1024}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{199}\)
\(A=\dfrac{199}{597}-\dfrac{3}{597}=\dfrac{196}{597}\)
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{197.199}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{199-197}{197.199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{999}\)
\(A=\dfrac{196}{697}\)
\(B=1+2+4+8+16+...+512+1024\)
\(2B=2+4+8+32+...+1024+2048\)
\(B=\left(2+4+8+...+2048\right)-\left(1+2+4+...+1024\right)\)
\(B=2048-1\)
\(B=2047\)
23x + 4=1024
đổi: 1024=210
=>23x +4=210
=>3x+4=10
3x=10-4
3x=6
x=6:3
x=2