Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a-b+c}{\dfrac{3}{2}-\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{34}{\dfrac{17}{12}}=24\)
Do đó: a=36; b=32; c=30
Ta có: \(\dfrac{2}{3}a=\dfrac{3}{4}b=\dfrac{4}{5}c\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}\)
mà a+b-c=38
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b-c}{\dfrac{3}{2}+\dfrac{4}{3}-\dfrac{5}{4}}=\dfrac{38}{\dfrac{19}{12}}=24\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{\dfrac{3}{2}}=24\\\dfrac{b}{\dfrac{4}{3}}=24\\\dfrac{c}{\dfrac{5}{4}}=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\cdot\dfrac{3}{2}=36\\b=24\cdot\dfrac{4}{3}=32\\c=24\cdot\dfrac{5}{4}=30\end{matrix}\right.\)
Vậy:(a,b,c)=(36;32;30)
Theo đầu bài ta có:
\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)
\(\Rightarrow\frac{5c-25}{30}=\frac{3a-3}{6}=\frac{4b+12}{16}\)
\(=\frac{\left(5c-25\right)-\left(3a-3\right)-\left(4b+12\right)}{30-6-16}\)
\(=\frac{\left(5c-3a-4b\right)-\left(25-3+12\right)}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}a=2\cdot2+1=5\\b=2\cdot4-3=5\\c=2\cdot6+5=17\end{cases}}\)
\(3a=4b=5c=\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{94}{\frac{47}{60}}=120\)
=> a = 40 ; b = 30 ; c = 24
Gọi k = \(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)
=> \(\begin{cases}a=2k+1\\b=4k-3\\c=6k+5\end{cases}\)
=> 5c - 4b - 3a = 30k + 25 - 16k + 12 - 6k - 3 = 8k + 34
=> 8k + 34 = 50
=> k = 2
=> \(\begin{cases}a=5\\b=5\\c=17\end{cases}\)
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)
Ta có: 3a=2b=\(\frac{a}{2}=\frac{b}{3}\)và 4b=5c=\(\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{52}{13}=4\)
\(\frac{a}{10}=4\Rightarrow a=10.4=40\)
\(\frac{b}{15}=4\Rightarrow b=15.4=60\)
\(\frac{c}{12}=4\Rightarrow c=12.4=48\)
Có: \(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
=>\(\frac{a}{10}=4\Rightarrow a=40\)
\(\frac{b}{15}=4\Rightarrow b=60\)
\(\frac{c}{12}=4\Rightarrow c=48\)
ta có : \(\begin{cases}3a=2b\\4b=5c\end{cases}\)<=>\(\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\)<=>\(\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\)
=->\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{-a-b+c}{-10-15+12}=-\frac{52}{13}=-4\)
=>\(\frac{a}{10}=-4\)=> a=-40
\(\frac{b}{15}=-4\)=>b=-60
\(\frac{c}{12}=-4\)=> c=-48
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a-b}{\dfrac{3}{2}-\dfrac{4}{3}}=\dfrac{28}{\dfrac{1}{6}}=168\)
Do đó: a=252; b=224; c=210