Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^{3^{2012}}\\ \Rightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv3\equiv0\left(mod3\right)\)
Vậy A là Hợp số
a là hợp số
a=(8^3)^100-1=8^300-1=(8^150)^2-1^2=(8^150-1)(8^150+1)
do đó ta có thể nhận thấy a có ít nhất là 4 ước nên a là hợp số
Đây là 1 bài toán cực nổi tiếng lun.
Liên quan tới 1 giả thiết của Fermat cho rằng \(2^{2^n}+1\)Là các số nguyên tố
Tuy nhiên khi xét tới n=5 tức là \(2^{2^5}+1=2^{32}+1\)thì lại sai
Vì \(\frac{2^{32}+1}{641}=6700417\)Tức là chia hết cho 641
Vậy kết quả cuối cùng là ko phải số nguyên tố nha ! :))
Đây là một bài toán hay áp dụng phương pháp phân tử , lời giải như sau
Xét \(M=x^{32}-x^{24}+2x^{23}+x^{18}-2x^{17}-x^{10}+2x^9+1\)Phân tích M thành nhân tử ta được
\(M=\left(x^9+x^7+1\right)\cdot\left(x^{23}-x^{21}+x^{19}-x^{17}+x^{14}-x^{10}+x^9-x^7+1\right)\)(Phần phân tích các bạn tự làm nhé )
Suy ra nếu \(x\in Z\)thì M chia hết cho \(x^9+x^7+1\)
Với x=2 thì \(M=2^{32}-2^{24}+2\cdot2^{23}+2^{18}-2\cdot2^{17}-2^{10}+2\cdot2^9+1=2^{32}+1\)Mặt khác do 2 nguyên nên M chia hết cho \(2^9+2^7+1=641\)Suy ra M là hợp số
Vậy \(2^{32}+1\)không là số nguyên tố
số \(2^{32}+1\)không phải là số nguyên tố... ko hỏi vì sao nha kkkkkkkkkk
nguyen to hoac hop so chac chan
k nha
là 1 hớp số chắc chắn luôn