![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 3.(x-9)+15=12+243:32
3x-27+15=12+243:9
3x-12=12+27
3x=12+12+27
3x=51
x=17
b, (3x-48).6=33.22+32.23-122
18x-288=32.3.22+32.22.2-(3.2.2)2
18x-288=32.3.22+32.22.2-32.22.22
18x-288= 32.22.(3+2-22)
18x-288= 9.4.(3+2-4)
18x-288=36.1
18x-288=36
18x=36+288
18x=324
x=18
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=2^{16}:2^8=2^8\)
\(8^{^4}:16^5=2^{16}:2^{20}=\frac{1}{16}\)
\(=3^{10}.3^9.3^5=3^{24}\)
\(=2^6.3^3.3^3.3^2.2^2=2^8.3^8\)
a)\(16^4:2^8=\left(2^4\right)^4:2^8=2^{16}:2^8=2^8\)
b)\(8^4.16^5=\left(2^3\right)^4.\left(2^4\right)^5=2^{12}.2^{20}=2^{32}\)
c)\(9^5.27^3.243=\left(3^2\right)^5.\left(3^3\right)^3.3^5=3^{10}.3^9.3^5=3^{24}\)
d)\(12^3.3^3.6^2=\left(2^2.3\right)^3.3^3.2.3=2^6.3^3.3^3.2.3=2^6.2.3^3.3^3.3=2^7.3^7=\left(2.3\right)^7=6^7\)
Chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3(x-9)+15=12+243:3^2\)
=> 3x - 27 + 15 = 12 + 243 : 9
=> 3x - 27 + 15 = 12 + 27
=> 3x - 27 + 15 = 39
=> 3x - 27 = 39 - 15
=> 3x - 27 = 24
=> 3x = 24 + 27
=> 3x = 51
=> x = 51 : 3 = 17
Vậy x = 17
\(1170:(x-13)=339-3\cdot10^2\)
=> 1170 : [x-13] = 339 - 3 . 100
=> 1170 : [x - 13] = 339 - 300
=> 1170 : [x-13] = 39
=> x - 13 = 30
=> x = 43
a) 3 ( x - 9 ) + 15 = 12 + 243 : 32
3 ( x - 9 ) + 15 = 12 + 27
3 ( x - 9 ) + 15 = 39
3 ( x - 9 ) = 39 - 15
3 ( x - 9 ) = 24
x - 9 = 24 : 3
x - 9 = 8
x = 8 + 9
x = 17
Vậy x = 17
b) 1170 : ( x - 13 ) = 339 - 3 . 102
1170 : ( x - 13 ) = 339 - 300
1170 : ( x - 13 ) = 39
x - 13 = 1170 : 39
x - 13 = 30
x = 30 + 13
x = 43
Vậy x = 43
=))
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3^n=243\)
\(\Leftrightarrow3^n=3^5\)
\(\Leftrightarrow n=5\left(TM\right)\)
Vậy \(n=5\)
b) \(2^n=256\)
\(\Leftrightarrow2^n=n^8\)
\(\Leftrightarrow n=8\left(TM\right)\)
Vậy \(n=8\)
c) \(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
Vì \(9^{617}>8^{617}\Leftrightarrow3^{1234}>2^{1851}\)
d) \(6^{30}=\left(6^2\right)^{15}=36^{15}\)
Vì \(36^{15}>12^{15}\Leftrightarrow6^{30}>12^{15}\)
1.
a, \(3^n=243\)
\(3^n=3^5\)
\(\Rightarrow n=5\)
b, \(2^n=256\)
\(2^n=2^8\)
\(\Rightarrow n=8\)
2.
a,\(3^{1234}\)và \(2^{1851}\)
\(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
Ta thấy \(9^{617}>8^{617}\Rightarrow3^{1234}>2^{1851}\)
b, \(6^{30}\)và \(12^{15}\)
\(6^{30}=\left(6^2\right)^{15}=36^{15}\)
Ta thấy \(36^{15}=12^{15}\Rightarrow6^{30}>12^{15}\)
2243-240.3.4.3.5
\(2^{243}\div2^{240}.12.45\\ =2^{243-240}.2^2.3.3^3.5\\ =2^3.2^2.3.3^3.5\\ =2^5.3^4.5\\ =32.81.5\\ =12960\)