\(2^2.3+2^2.1=?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

22.3+22.1

=22.(3+1)

=4.4

=16

Chúc bạn học giỏi nha!

14 tháng 8 2016

=4.3+4.1

=12+4

=16

19 tháng 8 2020

\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2020}\)

\(S=2\left(1+3+3^2+...+3^{2020}\right)\)

Đặt \(A=1+3+3^2+...+3^{2020}\)

\(\Rightarrow3A=3\left(1+3+3^2+...+3^{2020}\right)\)

\(3A=3+3^2+3^3+...+3^{2021}\)

\(2A=3A-A\)

\(2A=3+3^2+3^3+...+3^{2021}-\left(1+3+3^2+3^3+...+3^{2020}\right)\)

\(2A=3+3^2+3^3+...+3^{2021}-1-3-3^2-3^3-...-3^{2020}\)

\(2A=3^{2021}-1\)

\(\Rightarrow A=\frac{3^{2021}-1}{2}\)

Thế vào S ta được :

\(S=2\cdot\frac{3^{2021}-1}{2}=3^{2021}-1\)

Đến đây em chịu xD Nhờ các cao nhân giải tiếp ạ ;-;

VC
19 tháng 8 2020

Giải tiếp phần của bạn Quỳnh nhé! 

Xét dãy chữ số tận cùng của \(3^{2021}\) : \(3;9;7;1;3;9;7;1;...\)

Cứ 4 số thành một nhóm và lập lại như vậy. Có \(2021\div4=505\) ( dư 1 )

Vì dư 1 nên số thứ nhất trong nhóm dãy chữ số tận cùng là số tận cùng của S + 1. 

Vậy chữ số tận cùng của S là 3 - 1 = 2. 

1 tháng 7 2016

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)

\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)

\(A=\frac{1}{10}\)

\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)

\(B=\frac{1}{99}-\frac{1}{99}+1\)

\(B=1\)

1 tháng 7 2016

sorry nha Thiên Sứ đội lốt Ác Quỷ mk 5 - 6

8 tháng 9 2015

Bài 2:

100! = 1.2.3.4.   ...................   .100

30 tháng 6 2017

\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...............+\dfrac{2}{2008.2009}\)

\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+................+\dfrac{1}{2008.2009}\right)\)

\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.................+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)

\(=2\left(1-\dfrac{1}{2009}\right)\)

\(=2.\dfrac{2008}{2009}=\dfrac{4016}{2009}\)

28 tháng 4 2017

\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+.....+\frac{2}{99}-\frac{2}{100}\)

Ta tính các số âm và số dương giống nhau cộng lại có tổng bằng 0

\(\Rightarrow A=\frac{2}{2}-\frac{2}{100}\)

\(A=\frac{100}{100}-\frac{2}{100}=\frac{98}{100}=\frac{49}{50}\)

Đúng 100%

Đúng 100%

Đúng 100%

28 tháng 4 2017

\(A=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+....+\frac{2}{99\cdot100}\)

\(A:2=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)

A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A:2=\frac{1}{2}-\frac{1}{100}\)

\(A:2=\frac{49}{100}\)

       A  = \(\frac{49}{50}\)

8 tháng 8 2016

Từ đề bài ta suy ra:
\(x+1=6\)
\(y-2=9\)(y này là thay thế cho x thứ 2 để gọi cho dễ)
Vậy x=5; y(x2)=11

3 tháng 4 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.............\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}..........\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3............100\right).\left(1.2.3..........100\right)}{\left(1.2.3..........100\right)\left(2.3.4...........101\right)}\)

\(=\frac{1}{101}\)

28 tháng 2 2018

\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+........+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+........+\frac{1}{x\left(x+1\right)}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2010}\)

=> x + 1 = 2010

=> x = 2010 - 1

=> x = 2009

5 tháng 7 2017

\(B=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....++\frac{1}{9}-\frac{1}{10}\)

\(B=1-\frac{1}{10}=\frac{9}{10}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(C=1-\frac{1}{100}\)

\(C=\frac{99}{100}\)

5 tháng 7 2017

\(D=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+.....+\frac{1}{496}-\frac{1}{501}\right)\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{501}\right)=\frac{1}{5}\cdot\frac{500}{501}=\frac{100}{501}\)