K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2^2+2^4+2^6+...+2^{210}\)

=2^2+2^4+2^6+...+2^206+2^208+2^210

\(=2^2\left(1+2^2+2^4\right)+...+2^{206}\left(1+2^2+2^4\right)\)

\(=21\left(2^2+2^8+...+2^{206}\right)⋮21\)

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

14 tháng 12 2015

n=14

928-1

=...1-1

=....0 chia hết cho 10

=>92n-1 chia hết cho 2 va 5

Vay...

13 tháng 9 2015

up từng bài thôi,nhiều thế ko thánh nào làm cho đâu.thách nhau ak

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

29 tháng 11 2016

A = 2 + 2+ 23 + 2+ ... + 29 + 210

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 29 + 210 )

A = ( 1 + 2 ) . 2 + ( 1 + 2 ) . 23 + ... + ( 1 + 2 ) . 29

A = 3 . 2 + 3 . 23 + ... + 3 . 29

A = 3 . ( 2 + 23 + ... + 29 )

=> A chia hết cho 3

29 tháng 11 2016

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+210\right)=2\left(2^0+2^1\right)+2^3\left(2^0+2^1\right)+... \)

\(2^0=1,2^1=2,2^0+2^1=3\)

26 tháng 1 2016

a,  (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2

b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2

c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3