Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 320 - 318 = 316( 34- 32) = 316.(81 -9) = 316.72 =316.3.24 chi hết cho 24
231.(23-22+1) = 229(23.22- 22.22-22.1) =229(32-16 +4) = 229.20 chia hết cho 20
P= 7 + \(7^2+7^3+7^4+...+7^{2016}\)
=\(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{2013}+7^{2014}+7^{2015}+7^{2016}\right)\)
=\(\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{2012}\left(7+7^2+7^3+7^4\right)\)=2800+\(7^4\).2800+..+\(7^{2012}\).2800 \(⋮\) \(20^2\) ( Vì 2800 \(⋮\)\(20^2\))
=> P\(⋮\) \(20^2\)
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
Bài làm:
1) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
2) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
3) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{16}\right)⋮5\)
làm câu đầu nhé.
7^6+7^5-7^4=7^4* 7^2 + 7^4* 7^1 -7^4 * 1
=7^4 * (7^2+7^1-1(
= 7^4 * ( 49+7-1(
=7^4* 55
suy ra chia hết cho 55
các câu còn lại tương tự nhé bạn
Ta có :\(2^2=2.2\)
\(2^3=2.2^2\)
Tương tự như vậy ta có được :
\(2^2+2^3+2^4+...+2^{20}=2.2+2.2^2+...+2.2^{19}=2\left(2+2^2+...+2^{19}\right)⋮2\)
Vậy ta có điều phải chứng minh
tất cả các số hạng đều là lũy thừa của 2 nên 2^2+...+2^20 chia hết cho 2