Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) + ...+ (396 + 397 + 398 + 399) (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )
A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)
=> A chia hết cho 4 và chia hết cho 40
D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100)
D = 30 .1 + 25. (2 + 22 + 23 + 24 ) + ... + 297. (2 + 22 + 23 + 24 )
D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)
=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0
2) 540 = (54)10 = 62510 > 62010 => 540 > 62010
1030 = (103)10 = 100010 < 102410 = (210)10 = 2100
333444 = (3334)111 = (34.1114)111 = 81111.111444
444333 = (4443)111 = (43.1113)111 = 64111.111333 < 81111.111444
=> 333444 > 444333
Bài so sánh :
a) \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
\(620^{10}<625^{10}\)
Vậy 540 > 62010
b) 1030 = (103)10 = 100010
2100 = (210)10 = 102410
Vì 100010 < 102410 nên 1030 < 2100
c) 333444=(3.111)4.111=(34)111.(1114)111=81111. 111444
444333=(4.111)3.111=(43)111.(1113)111=64111.111333
Vì 81111>64111; 111444>111333 nên 333444 > 444333
S=21+22+23+...+2100
a) S=21+22+23+...+2100
=(21+22)+(23+24)+...+(299+2100)
=2(1+2)+22(1+2)+...+298(1+2)
=2.3+22.3+...298.3
Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3
a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)
\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6
b, tương tự
c, S chia hết cho 5 vì chia hết cho 15
S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2
Suy ra S chia hết cho 2 và 5
Suy ra S có tận cùng là 10
P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé
a)\(S=2^1+2^2+...+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2^1\cdot15+...+2^{97}\cdot15\)
\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)
c)\(S=2^1+2^2+...+2^{100}\)
\(2S=2\left(2^1+2^2+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(S=2^{101}-2\)
Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
\(=\overline{......0}\)
\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)
Bài 3:
a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=31+2^4.31+...+2^{96}.31\)
\(=31\left(1+2^4+...+2^{96}\right)⋮31\)
\(\Rightarrow\)\(đpcm\)
b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)
\(\Rightarrow C=2^{101}-2\)
Mà \(2^{2x}-2=C\)
\(\Rightarrow2^{2x}-2=2^{101}-2\)
\(\Rightarrow2^{2x}=2^{101}\)
\(\Rightarrow2x=101\)
\(\Rightarrow x=\frac{101}{2}\)
Vậy \(x=\frac{101}{2}\)
Bài 2:
Ta có : \(\overline{abcd}=1000a+100b+10c+d\)
\(=1000a+96b+8c+\left(d+2c+4b\right)\)
\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)
Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)
\(\Rightarrow\overline{abcd}⋮8\)
\(\Rightarrowđpcm\)
S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4
Ta nhóm như sau
=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
Mỗi ngoặc đều có thể rút ra đc (1+2+22+23) =15 nên tổng trên chia hết cho 15
Dễ dàng suy ra mỗi ngoặc đều có tận cùng là 0 nên tổng đó có tận cùng là 0.
dung roi tong so do = 0