Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(4^3-8^2\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(64-64\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).0=0\)
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\)
..................
\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có:
1 < M < 2
Vậy M không phải là số tự nhiên.
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có: 1 < M < 2
Vậy M không phải là số tự nhiên.
\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=16^{604}\cdot4=\overline{.....6}\cdot4=\overline{....4}\)
\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=81^{504}\cdot9=\overline{.....1}\cdot9=\overline{....9}\)
\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot\overline{.....7}=\overline{.....1}\cdot\overline{....7}=\overline{.....7}\)
\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{....6}\cdot8=\overline{......8}\)
\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{.....1}\cdot9=\overline{.....9}\)
Bài giải
Ta có :
\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=\overline{\left(...6\right)}^{504}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy ...
\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=\overline{\left(...1\right)}^{504}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy ...
\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot7^3=\overline{\left(...1\right)}^{504}\cdot343=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy ...
\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{\left(...6\right)}^{505}\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy ...
\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{\left(...1\right)}^{1011}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy ...
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
\(2^n-A=1\)
\(\Leftrightarrow A=2^n-1\)
Suy ra \(n=2021\)
Chọn b.
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
Lý thuyết: với toán tử % là phép lấy dư, khi đó:
\(a^b\%m=\left(a\%10\right)^{b\%4}\%m\)
a) \(3^{2022}\%7=3^2\%7=2\)
b) \(62^{78}\%15=2^2\%15=4\)
c) \(3^{2023}\%10=3^3\%10=7\)
d) \(2^{2000}\%5=2^0\%5=1\)
\(2^{2023}=\left(2^7\right)^{289}=128^{289}\)