K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

\(\frac{2}{\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+....+2015}}\)

\(=2:\left[2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\right)\right]\)

\(=2:\left[2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\right)\right]\)

\(=2:\left[2.\left(\frac{1}{2}-\frac{1}{2016}\right)\right]=2:\left[\frac{2.1007}{2016}\right]=\frac{2}{\frac{1007}{2008}}=\frac{2016}{1007}\)

8 tháng 9 2020

\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)

\(=1-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=1-\left(1-\frac{1}{2015}\right)=1-\frac{2014}{2015}=\frac{1}{2015}\)

=> \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}>\frac{1}{2015}\left(\text{đpcm}\right)\)

7 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{6}\left(1+2\right)+\frac{1}{9}\left(1+2+3\right)+....+\frac{1}{6045}\left(1+2+3+...+2015\right)\)

\(=\frac{1}{3}+\frac{1}{6}.\frac{2.3}{2}+\frac{1}{9}.\frac{3.4}{2}+....+\frac{1}{6045}.\frac{2015.2016}{2}\)

\(=\frac{1}{3}\left(1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2015}.\frac{2015.2016}{2}\right)\)

\(=\frac{1}{3}\left(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{2016}{2}\right)\)

\(=\frac{1}{3}\left(\frac{2+3+4+...+2016}{2}\right)\)

\(=\frac{1}{3}.\frac{2016.2017-1}{2}\)

\(=\frac{1}{3}.\frac{4066271}{2}=\frac{4066271}{6}\)

24 tháng 7 2016

Câu hỏi của Vũ Lê Ngọc Liên - Toán lớp 6 - Học toán với OnlineMath đây có câu giống nè :)

24 tháng 7 2016

\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2015}\right)\)

\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}...\frac{\left(1+2015\right).2015:2-1}{\left(1+2015\right).2015:2}\)

\(A=\frac{2}{2.3:2}.\frac{5}{3.4:2}...\frac{2016.2015:2-1}{2015.2016:2}\)

\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{\left(1008.2015-1\right).2}{2015.2016}\)

\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{2014.2017}{2015.2016}\)

\(A=\frac{1.2...2014}{2.3...2015}.\frac{4.5...2017}{3.4...2016}\)

\(A=\frac{1}{2015}.\frac{2017}{3}=\frac{2017}{6045}\)