Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2^{18}.2^7.3^{14}.3^3+3^{15}.2^{15}}{2^{10}.2^{15}.3^{15}+3^{14}.3.5.2^{26}}=\frac{2^{25}.3^{17}+3^{15}.2^{15}}{2^{25}.3^{15}+3^{15}.2^{26}.5}=\frac{2^{15}.3^{15}\left(2^{10}.3^2+1\right)}{2^{25}.3^{15}\left(1+2.5\right)}\)
\(=\frac{2^{10}.3^2+1}{2^{10}\left(1+2.5\right)}=\frac{2^{10}.3^2+1}{11.2^{10}}\)
Ta có:
\(A=\frac{2^{18}.18^7.3^3+3^{15}.2^{15}}{2^{10}.6^{15}+3^{14}.15.4^{13}}=\frac{2^{18}.\left(2.3^2\right)^7.3^3+3^{15}.2^{15}}{2^{10}.\left(2.3\right)^{15}+3^{14}.3.5.\left(2^2\right)^{13}}\)
\(=\frac{2^{18}.2^7.3^{14}.3^3+3^{15}.2^{15}}{2^{10}.2^{15}.3^{15}+3^{15}.5.2^{16}}=\frac{2^{25}.3^{17}+2^{15}.3^{15}}{2^{25}.3^{15}+3^{15}.2^{16}.5}=\frac{2^{15}.3^{15}.\left(3^2.2^{10}+1\right)}{2^{16}.3^{15}.\left(2^9+5\right)}\)
\(=\frac{3^2.2^{10}+1}{2^{10}+10}=\frac{9.1024+1}{1024+10}=\frac{9217}{1025}\)
a) 3. 5 ^ 2 + 15. 2 ^2 - 26 : 2
= 15 ^ 2 + 15. 4 - 13
= 225 + 60 - 13
= 272
b) 5 ^ 3. 2 - 100 : 4 + 2 ^ 3. 5
= 125. 2 - 25 + 40
= 250 - 25 + 40
= 265
c) 6 ^ 2 : 9 + 50. 2 - 3 ^ 3. 3
= 36 : 9 + 100 - 81
= 4 + 100 - 81
= 23
d) 3 ^ 2. 5 + 2 ^ 3 . 10 - 81 : 3
= 45 + 8 . 10 - 27
= 53 + 80 - 27
= 160
e) 5 ^ 13 : 5 ^ 10 - 25. 2 ^ 2
= 1220703125 : 9765625 - 25. 4
= 125 - 100
= 25
f) 20 : 2 ^ 2 + 5 ^ 9 : 5 ^ 8
= 20 : 4 + 1953125 : 390625
= 5 + 5
= 10
g) 100 : 5 ^ 2 + 7. 3 ^ 2
= 100 : 25 + 7 . 9
= 4 + 63
= 67
h) 84 :4 + 3 ^ 9 : 3 ^ 7 + 5 ^ 0
= 21 + 19683 : 2187 + 1
= 21 + 9 + 1
= 31
i) 29 - [ 16 + 3. ( 51 - 49) ]
= 29 - [ 16 + 3. 2 ]
= 29 - 22
= 7
Mình làm xong rồi nhé!
#)Giải :
Câu 1 :
Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)
\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )
\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)
\(\Rightarrow A>\frac{8}{27}\)
#~Will~be~Pens~#
Câu 1:(trội)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)
Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)
`\(=\frac{5.5.4^{15}.9^9-2^9.6^{18}.6^2}{5.3.4^{12}.2.9^9.3-2^9.2^2.6^{18}.11}\)
\(=\frac{5.4^3-6^2}{3.2.3-2^2.11}\)
\(=\frac{320-36}{18-44}\)
\(=\frac{-284}{26}=\frac{-142}{13}\)
Giải cụ thể giúp mk nhé
Ta có: 210.615+314.15.413:219 .187.3-315.225
=210.215.315+314.3.5.226:219.97.27.3-315.225
=225.315+315.225.10:225.315.2-315.225
=225.315+5-225.315
=5