\(x^2\)- 3x\(\sqrt{y}\)+ 2y

22. x + 2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22: \(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)

24: \(-6x+5\sqrt{x}+1=\left(\sqrt{x}-1\right)\left(-6\sqrt{x}-1\right)\)

21: \(x^2-3x\sqrt{y}+2y\)

\(=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)

\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)

\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)

23: \(\sqrt{x^3}-2\sqrt{x}-x\)

\(=x\sqrt{x}-2\sqrt{x}-x\)

\(=\sqrt{x}\left(x-\sqrt{x}-2\right)\)

\(=\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

NV
10 tháng 8 2020

6.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)

NV
10 tháng 8 2020

4.

ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)

\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)

\(\Leftrightarrow3t^2-7t+34=0\)

Phương trình vô nghiệm

5.

ĐKXĐ: ...

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:

\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x=4\Rightarrow x=2\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

16 tháng 5 2019

1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

=> pt vô no

2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)

\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)

\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)

\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)

NV
16 tháng 5 2019

Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm

Câu 2:

ĐKXĐ: \(x\le3\)

\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))

\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)

\(\Leftrightarrow36x=-36\Rightarrow x=-1\)

Câu 3:

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)

\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)

Phương trình vô nghiệm

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

29 tháng 7 2018

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

29 tháng 7 2018

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)