K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

\(A=2^1+2^2+2^3+2^4+2^5+2^6+2^7+...+2^{99}\)

    \(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

 \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

 \(=2.7+2^4.7+2^7.7+...+2^{97}.7\)

   \(=\left(2+2^4+2^7+...+2^{97}\right).7⋮7\)

\(\Rightarrow A⋮7\)

27 tháng 2 2018

A = 21 +2+2+24 +25  +2+2….+ 299 

A = (21 +2+23) +(24 +25  +26) + ….+ (297+298+299)

A = 14 + (21.23 +22.23  +23.23) + ….+ (21.296+22.296+23.296)

A = 14 + 23(21+22+23) + ...... + 296(21+22+23)

A = 14.1 + 23.14 + ....... + 296.14

A = 14.(1+23+....+296)

14 \(⋮\) 7

=> A \(⋮\) 7 (đpcm)

a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)

c: \(5S_3=5^6+5^7+...+5^{101}\)

\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)

hay \(S_3=\dfrac{5^{101}-5^5}{4}\)

d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)

 

: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2 
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2 
= -3 - 7 - 11 - ....-199 + 101^2 
= 101^2 - (3 + 7 + 11 + ... + 199) 
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50] 
= 101^2 - [(199 + 3).50]/2 
= 5151 tick nha

27 tháng 1 2016

Ngu hok, có vậy mà cx ko lm đk