Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^1+2^2+2^3+2^4+2^5+2^6+2^7+...+2^{99}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+2^7.7+...+2^{97}.7\)
\(=\left(2+2^4+2^7+...+2^{97}\right).7⋮7\)
\(\Rightarrow A⋮7\)
A = 21 +22 +23 +24 +25 +26 +27 ….+ 299
A = (21 +22 +23) +(24 +25 +26) + ….+ (297+298+299)
A = 14 + (21.23 +22.23 +23.23) + ….+ (21.296+22.296+23.296)
A = 14 + 23(21+22+23) + ...... + 296(21+22+23)
A = 14.1 + 23.14 + ....... + 296.14
A = 14.(1+23+....+296)
14 \(⋮\) 7
=> A \(⋮\) 7 (đpcm)
a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)
c: \(5S_3=5^6+5^7+...+5^{101}\)
\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)
hay \(S_3=\dfrac{5^{101}-5^5}{4}\)
d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)
: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2
= -3 - 7 - 11 - ....-199 + 101^2
= 101^2 - (3 + 7 + 11 + ... + 199)
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50]
= 101^2 - [(199 + 3).50]/2
= 5151 tick nha