Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x+2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=19\)
Chúc bạn học tốt!!!
a, \(\dfrac{x+1}{5}+\dfrac{x+3}{4}=\dfrac{x+5}{3}+\dfrac{x+7}{2}\)
\(\Rightarrow\dfrac{x+1}{5}+2+\dfrac{x+3}{4}+2=\dfrac{x+5}{3}+2+\dfrac{x+7}{2}+2\)
\(\Rightarrow\dfrac{x+11}{5}+\dfrac{x+11}{4}-\dfrac{x+11}{3}-\dfrac{x+11}{2}=0\)
\(\Rightarrow\left(x+11\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Vậy x = -11
b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15
Bạn Bùi Minh Tú có thể giải thích rõ hơn đc ko? Chứ bạn viết thế mik ko bt bạn giải kiểu gì đâu
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
Các bạn giúp mik giải bài 1 thôi cũng được vì bài 2 mik lm đc rồi. Hiện tại mik đag cần gấp giúp mik với
\(20^x\div14^x=\left(\frac{20}{14}\right)^x=\left(\frac{10}{7}\right)^x=\frac{10}{7}x\)
Mình biết kết quả là x = 1 nhưng chưa tìm ra cách giải, bạn cố gắng tìm nốt nhé!
1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
\(\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)
vay ....
\(\text{Ta có: }\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x.\left(x+1\right)}=\frac{13}{90}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{13}{90}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
=> x = 17
Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)
\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)
\(x=\frac{100}{9}+1=\frac{109}{9}\)
\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)
\(y=\frac{50}{3}+2=\frac{56}{3}\)
\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)
\(z=\frac{200}{9}+3=\frac{227}{9}\)
Chúc bạn học tốt
\(\)
cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm
Đề tớ gõ sai, Sr các cậu...
Đề đúng là :
\(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}=3\)
Giúp tớ nhen...Giải chi tiết giùm nha...Thank you !!!
\(\left(\frac{x-3}{90}-1\right)+\left(\frac{x-2}{91}-1\right)+\left(\frac{x-1}{90}-1\right)=0\)
\(\Leftrightarrow\frac{x-93}{90}+\frac{x-93}{91}+\frac{x-93}{92}=0\)
\(\Leftrightarrow\left(x-93\right)\left(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\right)=0\)
mà \(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\ne0\)
\(\Leftrightarrow x-93=0\Leftrightarrow x=93\)
Vậy x=93
Ta có :
\(\dfrac{x^2+y^2}{5}=\dfrac{x^2-y^2}{3}\Leftrightarrow5\cdot\left(x^2-y^2\right)=3\cdot\left(x^2+y^2\right)\\ \Leftrightarrow5x^2-5y^2=3x^2+3y^2\\ \Leftrightarrow5x^2-3x^2=3y^2+5y^2\\ \Leftrightarrow2x^2=8y^2\\ \Leftrightarrow x^2=4y^2\)
Thay vào \(x^{10}\cdot y^{10}=1024,tacó:\)
\(x^{10}\cdot y^{10}=1024\Leftrightarrow\left(x^2\right)^5\cdot y^{10}=1024\\ \Leftrightarrow\left(4y^2\right)^5\cdot y^{10}=1024\\ \Leftrightarrow1024\cdot y^7\cdot y^{10}=1024\\ \Rightarrow y^{17}=1\\ \Rightarrow y=1\)
Mà \(x^2=4y^2\Rightarrow x^2=4\cdot1^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
Ta có: \(20^x:14^x=\dfrac{10}{7}x\)
\(\Leftrightarrow\left(\dfrac{10}{7}\right)^x=\dfrac{10}{7}x\)
\(\Leftrightarrow x=\left(\dfrac{10}{7}\right)^{x-1}\)
Đến đây mình bí rồi, xin lỗi bạn!