\(20^{n^{ }}+16^n-3^n-1\) chia hết cho 323 (n chẵn, n thuộc N)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(20^n+16^n-3n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

Ta lại có: \(20^n-1⋮19\left(20-1=19\right)\)

\(16^n-3^n⋮19\)(vì n chẵn)

nên \(20^n+16^n-3^n-1⋮19\)

Ta có: \(20^n+16^n-3n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮17\left(20-3=17\right)\)

\(16^n-1⋮17\)(vì n chẵn)

nên \(20^n+16^n-3^n-1⋮17\)

\(20^n+16^n-3^n-1⋮19\)(cmt)

và ƯCLN(17,19)=1

nên \(20^n+16^n-3^n-1⋮19\cdot17\)

hay \(20^n+16^n-3^n-1⋮323\)(đpcm)

2 tháng 12 2021

chép mạng à 16^n-3^n chia hết cho 19

ảo

10 tháng 9 2016

n=2, chắc chắn

10 tháng 9 2016

nhầm rồi bạn ơi n là số tự nhiên chẵn mà nên tất nhiên sẽ bao gồm cả số 2

2 tháng 9 2016

Ta có 323=17.19

+Chứng minh A⋮17 

Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n) 

Nhận xét⎨(16n−1)⋮17                           (20n−3n)⋮17  

 ⇒A⋮17  (1)

+Chứng minh A⋮19A⋮19

Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)

Nhận xét ⎨(16n+3n)⋮19                     (20n−1)⋮19 

⇒A⋮19 (2)

Mà (17;19)=1(17;19)=1

Từ (1) và (2)⇒A⋮BCNN(17.19)

hay  A⋮323 (đpcm)

\(n^3-4n=n\left(n-2\right)\left(n+2\right)\)

\(=2k\left(2k-2\right)\left(2k+2\right)\)

\(=8k\left(k-1\right)\left(k+1\right)\)

Vì k;k-1 là hai số liên tiếp

nên \(8k\left(k-1\right)\left(k+1\right)⋮16\)

Vd như n=2 thì \(n^3+4n^2=8+4\cdot4=8+16⋮̸16\) nha bạn

 

7 tháng 4 2015

bài này đơn giản nhưng  bạn chỉ hỏi thành 6b LDK nên thôi vây

14 tháng 4 2016

đề sai phải là 20n+16n-3n-1 mới đúng