\(2019\cdot20182018-2018\cdot20192019+2018=?????\)

                help me!!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

Trả lời:

2019 . 20182018 - 2018 . 20192019 + 2018

= 2019 . 10001 . 2018 - 2018 . 20192019 + 2018 . 1

= 2018 . (20192019 - 20192019 + 1)

= 2018 .  1

= 2018

~Std well~

19 tháng 10 2019

sao lại có 10001

4 tháng 3 2019

What is the question ???

b: \(2^{91}=\left(2^{13}\right)^7\)

\(5^{35}=\left(5^5\right)^7\)

mà \(2^{13}>5^5\)

nên \(2^{91}>5^{35}\)

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

13 tháng 5 2019

Có: \(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}+1-2018+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)

\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}+2-2018+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)

Mà: \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)

\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\\ \Rightarrow A>B\)

b. 291 >290 =(25)18=3218

535 <536 =(52)18=2518

Vì 3218> 2518 => 290> 536 => 291> 535

6 tháng 8 2018

Tiếp sức cho Quân Tạ Minh câu a) nè! Áp dụng BĐT tam giác vô giải tuyệt cú mèo!!!

a) \(2018^{2019}+2018^{2018}\)\(2019^{2018}\)

Áp dụng BĐT tam giác: a + b > c ( a,b là hai cạnh của tam giác, c là cạnh còn lại.) Thế \(2018^{2019}=a;2018^{2018}=b;2019^{2018}=c\) theo BĐT tam giác,ta có: \(2018^{2019}+2018^{2018}>2019^{2018}\)

8 tháng 9 2018

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)