Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)
=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]
mà x^3 + y^3 + z^3 - 3xyz=0
<=> x+y+z=0
Vậy ...
Chúc bạn học tốt .
hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z
=> x-y=y-z=x-z=0 => x=y=z
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)(đk: x \(\ne\)-1; x \(\ne\)3)
\(\Leftrightarrow\)\(\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\) x(x + 1) - x(x - 3) = 4x
\(\Leftrightarrow\) x2 + x - x2 + 3x = 4x
\(\Leftrightarrow\) 3x - 4x = 0
\(\Leftrightarrow\) -x = 0
\(\Leftrightarrow\) x = 0 (tmđk)
Vậy phương trên có n0 là x = 0
1) Ta có :
\(x^2\ge0\forall x,y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\forall x,y\)
Ta lại có
\(x^2+y^2\ge2xy\)
Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất
Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu
Dấu "=" xảy ra khi và chỉ khi x = y 0
Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0
Bài 2:
Ta thấy: \(\left|x+1\right|^{11}\ge0\)
\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 3:
\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)
\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)
\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)
Bài 4: phân thức trên ko xác định khi mẫu bằng 0
Tức là \(x-7=0\Rightarrow x=7\)
P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn
a ) \(x^2-3x+3=0\)
\(\Leftrightarrow x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\) ( Vô lý , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) )
\(\Rightarrow\) Pt vô nghiệm
b ) \(x-\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x-2\left(x-2\right)=0\)
\(\Leftrightarrow x-2x+4=0\)
\(\Leftrightarrow4-x=0\)
\(\Leftrightarrow x=4\)
Vậy ...
c ) \(\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
d ) \(x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy ...
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Đặt 2017-x=a; 2019-x=b
\(\Leftrightarrow a+b=4036-2x\)
\(\Leftrightarrow-\left(a+b\right)=2x-4036\)
Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
\(\Leftrightarrow-3ab\left(a+b\right)=0\)
mà -3<0
nên \(ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy: S={2017;2018;2019}
Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)
Ta có: \(x+y+z=0\)
\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)
Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0
=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
Gải phương trình được x=2017; x=2019; x=2018