Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{-2010}{2020}=\frac{-2000+\left(-10\right)}{2010+10}=\frac{-2000}{2010}+\frac{-10}{10}=\frac{-2000}{2010}+1\)
Mà \(\frac{-2000}{2010}+1>\frac{-2000}{2010}\)
\(\Rightarrow\frac{-2010}{2020}>\frac{-2000}{2010}\)
Vậy \(\frac{-2010}{2020}>\frac{-2000}{2010}\).
Ai k mình mình k lại.
\(\frac{-2000}{2010}=0,995...\)
\(\frac{-2010}{2020}=0,995049...\)
vay \(\frac{-2000}{2010}<\frac{-2010}{2020}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{1+\frac{2012}{2011}+\frac{2012}{2010}+\frac{2012}{2009}+...+\frac{2012}{2}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2011}+...+\frac{2012}{2}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)}=\frac{1}{2012}\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
Do \(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\)nên \(A>B\)
Do 20102011+1<20102012+1=>A<1
Tương tự với B;B<1
Theo đề bài ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}<\frac{2010^{2011}+1+2009}{2010^{2012}+1+2009}=\frac{2010^{2011}+2010}{2010^{2012}+2010}=\frac{2010.\left(1+2010^{2010}\right)}{2010.\left(1+2010^{2011}\right)}=\frac{2010^{2010}+1}{2010^{2011}+1}=B\)(*)
Từ (*)=> A<B
\(\frac{2319}{2010}-\frac{1789}{2000}-\frac{309}{2010}+\frac{2009}{2010}-\frac{211}{2000}\)
\(=\left(\frac{2319}{2010}-\frac{309}{2010}+\frac{2009}{2010}\right)-\left(\frac{1789}{2000}-\frac{211}{2000}\right)\)
\(=\frac{4019}{2010}-\frac{789}{1000}\)
=))
2010.2010 - 2000.2020
= 20102 - (2010 - 10). (2010+10)
= 20102 - (20102 - 102)
= 20102 - 20102 + 102
= 100