K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Đpcm

⇔ \(\dfrac{a+b+c-a}{a}+\dfrac{a+b+c-b}{b}+\dfrac{a+b+c-c}{c}\) ≥ 6

⇔ \(\dfrac{b+c}{a}+\dfrac{a+b}{c}+\dfrac{a+c}{b}\ge6\)

⇔ \(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\ge6\) (1)

Bất đẳng thức Cosi => (1)

Dấu bằng xảy ra khi a = b = c = \(\dfrac{2008}{3}\)

 

8 tháng 5 2016

a) A=3^2+3^4+...........+3^2008

=>32.A = 3+ 36 + ... + 32010
=> 9A - A = (3+ 36 + ... + 32010) - (3^2+3^4+...........+3^2008)
=> 8A = 32010 - 32
\(\Rightarrow A=\frac{3^{2010}-9}{8}\)

b, A=3^2+3^4+...+3^2008

A=(3^2+3^4)+...+(3^2006+3^2008)

A=3^2(1+9)+...+3^2006(1+9)

A=3^2.10+...+3^2006.10

A=(3^2+...+3^2006).10 

Vì \(10⋮2\) nên \(\left(3^2+...+3^{2006}\right)⋮2\)

\(\Rightarrow A⋮2\)

8 tháng 5 2016

Mk làm thế này có đúng ko nhébanh

a)A=3+32+33+...+32008

A=(3+32)+(33+34)+...+(32007+32008)

A=3(1+3)+33(1+3)+...+32007(1+3)

A=3.4+33.4+...+32007.4

A=(3+33....+32007) .4

b)Vì (3+33....+32007) .4 chia hết cho 4

Mà giá trị nào chia hết cho 4 thì chia hết cho 2

\(\Rightarrow\)A chia hết cho 4

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Diện tích rừng trung bình của nước ta từ năm 2008 đến năm 2019 là: \(\overline X  = \frac{{13,1 + 13,2 + 13,4 + 13,5 + 13,9 + 14,0 + 13,8 + 14,1 + 14,4 + 14,4 + 14,5 + 14,6}}{{12}} = 13,9\)

b) Từ năm 2008 đến năm 2019, diện tích rừng của năm có giá trị thấp nhất là: 13,1 (ha)

    Từ năm 2008 đến năm 2019, diện tích rừng của năm có giá trị cao nhất là: 14,6 (ha)

c) +) So với năm 2008, tổng diện tích rừng của nước ta năm 2019 tăng lên số héc-ta là: \(\Delta  = 14,6 - 13,1 = 1,5\left( {ha} \right)\)

Vậy so với năm 2008, tỉ lệ tổng diện tích rừng của nước ta năm 2019 tăng lên được : \(\frac{{1,5}}{{13,1}} = 11,4\% \)

Theo em, tỉ lệ cây tăng đó là cao.

NV
1 tháng 1 2019

Áp dụng BĐT Cauchy-Schwarz dạng engel:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

1 tháng 1 2019

Cách khác :

Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(\dfrac{a^2}{a+b}+\dfrac{a+b}{4}\ge2\sqrt{\dfrac{a^2\left(a+b\right)}{4\left(a+b\right)}}=a\)

Tương tự: \(\dfrac{b^2}{b+c}+\dfrac{b+c}{4}\ge b;\dfrac{c^2}{c+a}+\dfrac{c+a}{4}\ge c\)

Cộng theo vế ta được:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)(đpcm)

15 tháng 8 2019

\(Q=\frac{a^4}{ab+ca}+\frac{b^4}{ab+bc}+\frac{c^4}{bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{2}\ge\frac{1}{6}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
1 tháng 1 2019

\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)

\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

C=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009-2010-2011

=-1-2011

=-2012

24 tháng 9 2016

Bài 1:

a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)

\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)

b) tương tự 

24 tháng 9 2016

b) (x-12+y)200+(x-4-y)200= 0

\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)

\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)

Trừ theo vế của (1) và (2) ta được:

\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)

Vậy x=8; y=4