Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{2001.2002+2003.21+1981}{2002.2003-2001.2002}=\frac{2001.2002+2002.21+21+1981}{2002.\left(2003-2001\right)}\)
=\(\frac{2002.\left(2001+21\right)+2002}{2002.2}=\frac{2002.2022+2002}{2002.2}\)
=\(\frac{2002.\left(2022+1\right)}{2002.2}=\frac{2002.2023}{2002.2}\)
=\(\frac{2023}{2}\)
N/X(nhận xét) : ta thấy 2001/2001x2002=1/1x2002=1/2002
2002/2002x2003=1/1x2003=1/2003
vì 1/2002>1/2003 suy ra 2001/2001x2002>2002/2002x2003 ( cứ so sánh = phần bù đi nhé , cậu mà ko bt phần bù là gì thì tớ lạy cậu luôn đấy )
(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003 ae ghi lời giải jup mình nhé. Tìm x
Gọi \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2002}\right).x\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}....\frac{2001}{2002}.x=\frac{x}{2002}\)
Gọi \(B=1-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2002.2003}\)
=>\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)
\(\Rightarrow B=1-\left(1-\frac{1}{2003}\right)=1-\frac{2002}{2003}=\frac{1}{2003}\)
\(\Rightarrow\frac{x}{2002}=\frac{1}{2003}\Rightarrow x=\frac{2002}{2003}\)
Ta có: 1981 - {1981 - [1985 - (1 + 3 + 5 + 7)2 : (3 + 40)2 ]}
= 1981 - {1981 - [1985 - 162 : (3 + 1)2 ]}
= 1981 - {1981 - [1985 - 162 : 42 ]}
= 1981 - {1981 - [1985 - 256 : 16 ]}
= 1981 - {1981 - [1985 - 16 ]}
= 1981 - {1981 - 1969}
= 1981 - 12
= 1969
P/S: Ở đây, nếu bạn sử dụng ngoặc như mình vẫn có điểm tối đa
Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 (k 2 +k)= k=1 ∑ 2002 k 2 + k=1 ∑ 2002 k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n k 2 = 6 n(n+1)(2n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 k 2 = 6 2002(2002+1)(2×2002+1) = 6 2002×2003×4005 Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n k= 2 n(n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 k= 2 2002(2002+1) = 2 2002×2003 Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 + 2 2002×2003 Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 + 2 1 ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 + 2 1 = 6 4005+3 = 6 4008 =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.
Bạn cộng mỗi vế cho 4 trong đó mỗi phần tử cộng với 1 = -1954(hình như vậy) thì x = 2004
\(\dfrac{2001.2002+1981+2003.21}{2002.2003-2001.2002}\)
\(=\dfrac{2001.2002+1981+\left(2002+1\right).21}{2002.\left(2003-2001\right)}\)
\(=\dfrac{2001.2002+1981+21+2002.21}{2002.2}\)
\(=\dfrac{2001.2002+2002+2002.21}{2002.2}\)
\(=\dfrac{2002\left(2001+1+21\right)}{2002.2}=\dfrac{2023}{2}\)