K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2020

Bạn làm đúng nhưng ko hiểu đề và đáp án thôi

Đề hỏi "nghiệm nguyên dương nhỏ nhất"

\(\left[{}\begin{matrix}x=\frac{3\pi}{4}+k2\pi\\x=\frac{7\pi}{4}+k2\pi\end{matrix}\right.\) nên \(x=\frac{3\pi}{4}\) (ứng với \(k=0\))

\(\frac{3\pi}{4}\in\left[\frac{3\pi}{4};\pi\right]\) nên đáp án D đúng

17 tháng 6 2016

điều kiện : cosx\(\ne\)\(\frac{1}{\sqrt{2}}\)=> x\(\ne\)\(\pm\)\(\frac{\pi}{4}\)+2k\(\pi\), k\(\in\)Z

pt<=> tử số =0

<=>cos2x-sin(3x-\(\frac{\pi}{4}\)+x+\(\frac{3\pi}{4}\))-sin(3x-\(\frac{\pi}{4}\)-x-\(\frac{3\pi}{4}\))-2=0

<=> cos2x-sin(x+\(\frac{\pi}{2}\))-sin(2x-\(\pi\))-2=0

<=> cos2x-cosx+sin2x-2sin2x-2cos2x=0

<=>-cos2x-coxs+2sinx.cosx-2sin2x=0

đến đây bạn nhóm lại ra nghiệm rồi kiểm tra đk là xong

16 tháng 8 2017

Đáp án C

D=sin(pi+x)+sinx+cot(pi-x)+tan(pi/2-x)

=-sinx+sinx-cotx+cotx=0

7 tháng 6 2019

Bạn tham khảo thử nhé

NV
21 tháng 9 2019

a/ \(y'=2cos2x=0\Rightarrow cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x=\frac{\pi}{4}\)

\(cos2x< 0\) khi \(\frac{\pi}{4}< x< \frac{\pi}{2}\); \(cos2x>0\) khi \(0< x< \frac{\pi}{4}\)

Hàm số đồng biến trên \(\left(0;\frac{\pi}{4}\right)\) nghịch biến trên \(\left(\frac{\pi}{4};\frac{\pi}{2}\right)\)

b/ \(y'=-2sin2x=0\Rightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)

Do \(x\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\Rightarrow x=0\)

Hàm số đồng biến trên \(\left(-\frac{\pi}{4};0\right)\) nghịch biến trên \(\left(0;\frac{\pi}{4}\right)\)

20 tháng 9 2016

đề đúng không vậy

14 tháng 4 2018

Đáp án C