\(\sqrt{m^2+1}\) với tham số m
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

Giải thích các bước giải:

a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3

có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)

Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB

Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3

→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)

Vậy SOAB=94đvdtSOAB=94đvdt

b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1

⇔m≠0⇔m≠0

Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2 

Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:

{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3

→{3=−2m+2−my=3{3=−2m+2−my=3 

↔{−3m=1y=3{−3m=1y=3 

↔{m=−13y=3{m=−13y=3

→m=−13→m=-13(thỏa mãn)

Vậy m=−13m=-13 

a: (d1); y=4mx-(m+5)

=m(4x-1)-5

Điểm mà (d1) luôn đi qua có tọa độ là:

4x-1=0 và y=-5

=>x=1/4 và y=-5

(d2): \(y=\left(3m^2+1\right)x+m^2-4\)

=3m^2x+3x+m^2-4

=m^2(3x+1)+3x-4

ĐIểm mà (d2) luôn đi qua có tọa độ là:

3x+1=0 và y=3x-4

=>x=-1/3 và y=-1-4=-5

b: A(1/4;-5); B(-1/3;-5)

\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)

c: Để hai đường song song thì

\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)

5 tháng 4 2019

a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)

Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình : 

\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)

Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)

b, Phương trình hoành độ giao điểm của (d) và (P) là

\(mx^2=\left(m+2\right)x+m-1\)

\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)

Vì m khác 0 nên pt trên là pt bậc 2

Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)

               \(=m^2+4m+4+4m^2-4m\)

               \(=5m^2+4>0\)

Nên pt trên luôn có 2 nghiệm p/b

hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0

NV
12 tháng 11 2019

a/ \(y=-2x-5\)

\(\Rightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

b/ \(y=x-2\)

\(\Rightarrow2m.1=-1\Rightarrow m=-\frac{1}{2}\)

Bài 2:

Hệ phương trình tọa độ giao điểm M:

\(\left\{{}\begin{matrix}y=3x-2\\2y-x=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

Bài 3:

Hệ pt tọa độ giao điểm A của d1 và d2:

\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow d_3\) qua A

\(\Rightarrow\left(m-1\right).2+2=1\Rightarrow m=\frac{1}{2}\)