Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
\(\frac{637\times527-189}{526\times637+448}\)
\(=\frac{637\times526+527-189}{526\times637-189+637}\)
\(=\frac{1+527-189}{1-189+637}\)
\(=\frac{1-189+527}{1-189+637}\)
\(=\frac{527}{449}=\frac{339}{449}\)
~ Hok tốt ~
\(3-x\times\frac{1}{2}=\frac{3}{4}\)
\(x\times\frac{1}{2}=3-\frac{3}{4}\)
\(x\times\frac{1}{2}=\frac{12}{4}-\frac{3}{4}\)
\(x\times\frac{1}{2}=\frac{9}{4}\)
\(x=\frac{9}{4}\div\frac{1}{2}\)
\(x=\frac{9}{4}\times\frac{2}{1}\)
\(x=\frac{18}{4}=\frac{9}{2}\)
Vậy x = 9/2
ik r mk làm tiếp cho
Ta có :
\(\frac{1995.1993-18}{1975+1993.1994}\)
\(=\frac{1995.1993-18}{1993-18+1993.1994}\)
\(=\frac{1995.1993-18}{\left(1+1994\right).1993-18}\)
\(=\frac{1995.1993-18}{1995.1993-18}\)
\(=1\)
Chúc bạn học tốt ~
b, 125 - 25:3 x 12 = 125 - \(\frac{25}{3}\)x 12 = 125 - 100 = 25
a, 50% + \(\frac{7}{12}\)- \(\frac{1}{2}\) = \(\frac{50}{100}+\frac{7}{12}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}+\frac{7}{12}=0+\frac{7}{12}=\frac{7}{12}\)
\(A=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+........+\frac{1}{100.104}\)
\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+.......+\frac{4}{100.104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+.......+\frac{1}{100}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\frac{99}{520}=\frac{99}{2080}\)
a) \(\frac{637\times527-189}{526\times637+448}\)
\(=\frac{637\times\left(526+1\right)-189}{526\times637+448}\)
\(=\frac{637\times526+637-189}{526\times637+448}\)
\(=\frac{637+526+448}{526\times637+448}\)
\(=1\)
b) \(\frac{64\times50+44\times100}{27\times38+146\times19}\)
\(=\frac{50\times\left(64+44\times2\right)}{19\times\left(27\times2+146\right)}\)
\(=\frac{50\times\left(64+88\right)}{19\times\left(54+146\right)}\)
\(=\frac{50\times152}{19\times200}\)
\(=\frac{152}{19\times4}\)
\(=\frac{38}{19}\)
\(=\frac{2}{1}\)
\(=2\)