2) Tìm số tự nhiên n >1 sao cho:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

23 tháng 7 2017

a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2

=3n+(1+2+3)

=3n+6.

=3(n+2)

Vì n+2EN.

=>3(n+2) chia hết cho 3.

b)Cách lm tương tự.

Ủng hộ nhá!
 

a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3 

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3 

b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 (  không chia hết cho 4 )

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

26 tháng 6 2017

a)(x - 45) . 27 = 0 

x-45=0:27

x-45=0

x=0+45

x=45.

b)23 . (42 - x) = 23

42-x=23:23

42-x=1

x=42-1

x=41

26 tháng 6 2017

Câu 1:

a)(x-45)*27=0.

=>x-45=0:27.

=>x-45=0.

=>x=0+45.

=>x=45.

Vậy......

b)23*(42-x)=23.

=>42-x=23:23.

=>42-x=1.

=>x=42-1.

=>x=41.

Vậy....

Câu 2:Có vấn đề về đề bài.

21 tháng 4 2016

dễ mak 

chỉ cần nói cái dưới là u của cái trên

rồi tim ra 1 số chia hết cái dưới 

11 tháng 10 2017

a)Ta có\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2\equiv5\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2⋮5\)

Vậy\(3^{4n+1}+2⋮5\)

b)Ta có\(2^4\equiv1\left(mod5\right)\Rightarrow2^{4n}\equiv1\left(mod5\right)\Rightarrow2^{4n+1}\equiv2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}+3\equiv5\left(mod5\right)\Rightarrow2^{4n+1}+3⋮5\)

Vậy\(2^{4n+1}+3⋮5\)

c)Ta có\(9^2\equiv1\left(mod10\right)\Rightarrow9^{2n}\equiv1\left(mod10\right)\)

\(\Rightarrow9^{2n+1}\equiv9\left(mod10\right)\Rightarrow9^{2n+1}+1\equiv10\left(mod10\right)\)

\(\Rightarrow9^{2n+1}+1⋮10\)

Vậy\(9^{2n+1}+1⋮10\)

11 tháng 10 2017

a) 34n + 1 + 2                                       

=(34)n x 3 + 2

= 81n x 3 + 2

...1 x 3 + 2

...5 chia hết cho 5

b) 24n+1 + 3

= (24)n x 2 + 3

= 16n x 2 + 3

...6 x 2 + 3

...5 chia hết cho 5

c) 92n + 1 + 1

= (92)n x 9 + 1

= 81n x 9 + 1

=...1 x 9 + 1

...0 chia hết cho 10