Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : n+2\(⋮\)n-3
\(\Rightarrow\)n-3+5\(⋮\)n-3
Vì n-3\(⋮\)n-3 nên 5\(⋮\)n-3
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
+) n-3=-1\(\Rightarrow\)n=2 (t/m)
+) n-3=1\(\Rightarrow\)n=4 (t/m)
+) n-3=-5\(\Rightarrow\)n=-2 (t/m)
+) n-3=5\(\Rightarrow\)n=8 (t/m)
Vậy n\(\in\){-2;2;4;8}
a, 3n + 6 chia hết cho n
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n
=>n ЄƯ {1;2;3;6} vậy n = 1 ; 6 ;2;3
b, (5n-5)chia hết cho n
vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5 phải chia hết cho n
=>n Є {1;5} vậy n = 1 ; 5
Để mk làm tiếp mấy bài còn lại nhé!
c) ta có: 3n + 9 chia hết cho n + 2
=> 3n + 6 + 3 chia hết cho n + 2
3.(n+2) + 3 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nhé!
d) ta có: 4n + 8 chia hết cho n - 2
=> 4n - 8 + 16 chia hết cho n - 2
4.(n-2) + 16 chia hết cho n - 2
mà 4.(n-2) chia hết cho n - 2
=> 16 chia hết cho n - 2
...
e) ta có: 3n + 8 chia hết cho 2n + 1
=> 2.(3n+8) chia hết cho 2n + 1
6n + 16 chia hết cho 2n + 1
6n + 3 + 13 chia hết cho 2n + 1
3.(2n+1) + 13 chia hết cho 2n + 1
mà 3.(2n+1) chia hết cho 2n + 1
=> 13 chia hết cho 2n + 1
...
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
a) 2n - 4 ⋮ n - 3
2n - 6 + 2 ⋮ n - 3
2( n - 3 ) + 2 ⋮ n - 3
Vì 2( n - 3 ) ⋮ n - 3
=> 2 ⋮ n - 3
=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }
=> n thuộc { 4; 2; 5; 1 }
Vậy,......
- Các câu còn lại tương tự
\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)
\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)
\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)
Vậy \(n=1;2;4;5\)
Ta có : 6n + 5 chia hết cho 2n - 1
<=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3(2n - 1) + 8 chia hết cho 2n - 1
<=> 8 chia hết cho 2n - 1
<=> 2n - 1 thuôc Ư(8) = ......
=> 2n = .......
=> n = ......
Ta có : 6n + 3 chia hết cho 4n + 1
<=> 2(6n + 3) chia hết cho 4n + 1
<=> 12n + 6 chia hết cho 4n + 1
<=> 12n + 3 + 3 chia hết cho 4n + 1
<=> 3(4n + 1) + 3 chia hết cho 4n + 1
<=> 3 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(3)
tự giải tiếp