Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)
\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)
\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)
b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)
\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)
(1-1/3).(1-1/5).(1-1/7).(1-1/9).(1-1/11).(1-1/13).(1-1/2).(1-1/4).(1-1/6).(1-1/8).(1-1/10)
=2/3.4/5.6/7.8/9.10/11.12/13.1/2.3/4.5/6.7/8.9/10
=8/15.48/63.120/143.3/8.35/48.9/10
=384/945.360/1144.315/480
=138240/1081080.315/480
=43545600/518918400=84/1001
P/s: Bài này chỉ tính được giá trị "gần đúng" của biểu thức thôi nhé!
\(\frac{21}{54}+\frac{3}{75}:\frac{\left(\frac{39}{65}+0,415-\frac{33}{600}\right)\frac{21}{91}}{7^2-18,25+13\frac{15}{36}-16\frac{17}{102}}\)
\(\Leftrightarrow\frac{21}{54}+\frac{3}{75}:\frac{\left(0,6+0,415-0,055\right)0,23}{49-18,25+\frac{483}{36}-\frac{1649}{102}}\)
\(\Leftrightarrow\frac{21}{54}+\frac{3}{75}:\frac{\left(0,6+0,415-0,055\right)0,23}{49-18,25+13,41-16,1}\)
\(\Leftrightarrow\frac{21}{54}+\frac{3}{75}:\frac{0,96.0,23}{28,06}\Leftrightarrow\frac{21}{54}+\frac{3}{75}:\frac{0,2208}{28,06}\)
\(\Leftrightarrow\frac{21}{54}+\left(\frac{3}{75}:\frac{0,2208}{28,06}\right)\Leftrightarrow\frac{21}{54}+\left(\frac{3}{75}.\frac{28,06}{0,2208}\right)=\frac{21}{54}+\frac{61}{12}=\frac{197}{36}\)
P/s: Giải bài này mà mệt cả đầu =((
Bài 1:
1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3
= \(\frac{11}{3}\): \(\frac{10}{3}\)- 3
= \(\frac{11}{3}\). \(\frac{3}{10}\)- 3
= \(\frac{11}{10}\)- 3
= \(\frac{-19}{10}\)
2) \(\frac{5}{6}\): \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\) . \(\frac{52}{3}\)- \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))
= \(\frac{5}{6}\).( -30)
= -25
Ta có
\(\frac{1}{1.6}+\frac{1}{6.11}+......+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}\left(1-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}.\left[\frac{\left(5n+6\right)-1}{\left(5n+6\right)}\right]\)
\(=\frac{1}{5}.\frac{5n+5}{5n+6}\)
\(=\frac{n+1}{5n+6}\)
\(\Rightarrow\frac{1}{1.6}+\frac{1}{6.11}+......+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\) ( đpcm )
`Answer:`
\(2-\left(\frac{13}{65}+\frac{21}{40}\right)+\left(-\frac{52}{65}+\frac{-1}{-40}\right)\)
\(=2-\frac{13}{65}-\frac{21}{40}-\frac{52}{65}+\frac{1}{40}\)
\(=2+\left(-\frac{13}{65}-\frac{52}{65}\right)+\left(-\frac{23}{40}+\frac{1}{40}\right)\)
\(=2-\frac{65}{65}-\frac{20}{40}\)
\(=2-1-\frac{1}{2}\)
\(=1-\frac{1}{2}\)
\(=0,5\)