\(tanx+cosx-cos^2x=sinx\left(1+tanx.tan\frac{x}{2}\right)\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 7 2020

d/

ĐKXĐ: ...

Biến đôi biểu thức vế trái trước:

\(1+tanx.tan\frac{x}{2}=1+\frac{sinx.sin\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{sinx.sin\frac{x}{2}+cosx.cos\frac{x}{2}}{cosx.cos\frac{x}{2}}=\frac{cos\left(x-\frac{x}{2}\right)}{cosx.cos\frac{x}{2}}=\frac{1}{cosx}\)

Do đó pt tương đương:

\(\sqrt{3}\left(1+tan^2x\right)-tanx-2\sqrt{3}=sinx.\frac{1}{cosx}\)

\(\Leftrightarrow\sqrt{3}tan^2x-2tanx-\sqrt{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Sử dụng kết quả biến đổi trên làm câu c sẽ lẹ hơn cách cũ

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)

\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)

\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)

\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)

\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pi+k2\pi\)

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

18 tháng 8 2020

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁCChương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁCChương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

18 tháng 8 2020

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NV
19 tháng 8 2020

Đặt \(x+\frac{\pi}{4}=t\Rightarrow x=t-\frac{\pi}{4}\)

Pt trở thành:

\(sin^3t=\sqrt{2}sin\left(t-\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin^3t=sint-cost\)

\(\Leftrightarrow sint-sin^3t-cost=0\)

\(\Leftrightarrow sint\left(1-sin^2t\right)-cost=0\)

\(\Leftrightarrow sint.cos^2t-cost=0\)

\(\Leftrightarrow cost\left(sint.cost-1\right)=0\)

\(\Leftrightarrow cost\left(\frac{1}{2}sin2t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=2>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cos\left(x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

NV
19 tháng 8 2020

c/

ĐKXĐ: ...

Chia 2 vế cho \(cos^2x\) ta được:

\(\left(1+tanx\right)tan^2x=3tanx\left(1-tanx\right)+3\left(1+tan^2x\right)\)

\(\Leftrightarrow tan^3x+tan^2x=3tanx-3tan^2x+3+3tan^2x\)

\(\Leftrightarrow tan^3x+tan^2x-3tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
22 tháng 7 2020

d/

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\frac{sin\left(3x-x\right)}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{2sinx.cosx}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
22 tháng 7 2020

c/

ĐKXĐ: \(sin2x\ne0\)

\(\Leftrightarrow\frac{\frac{sinx}{cosx}-sinx}{sin^3x}=\frac{1}{cosx}\)

\(\Leftrightarrow sinx-sinx.cosx=sin^3x\)

\(\Leftrightarrow1-cosx=sin^2x\)

\(\Leftrightarrow1-cosx=1-cos^2x\)

\(\Leftrightarrow cos^2x-cosx=0\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\)

NV
15 tháng 7 2020

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho

NV
15 tháng 7 2020

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)

Pt trở thành:

\(9a+2\left(a^2-4\right)=1\)

\(\Leftrightarrow2a^2+9a-9=0\)

Pt này nghiệm xấu quá bạn :(

d/ĐKXĐ: ...

Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)

Pt trở thành:

\(2\left(a^2+4\right)+9a-1=0\)

\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
24 tháng 7 2020

b/

ĐKXĐ: ...

Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)

Pt trở thành:

\(4\left(a^2-2\right)+4a=7\)

\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

NV
18 tháng 8 2020

b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)

\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)

\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)

\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

NV
18 tháng 8 2020

d/

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)

\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)

\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11