\(\frac{a}{ab+a+1}\) + \(\frac{b}{bc+b+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{caab+cab+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=1\)

21 tháng 12 2016

hay

 

20 tháng 11 2016

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(< =>\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) (chia cả 2 vế cho a+b+c)

9 tháng 6 2017

từ giả thiết 1 suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

lại có 1 + a2 \(\ge\)2a nên \(\frac{1}{1+a^2}\le\frac{1}{2a}\)

do đó \(\frac{3}{2}=\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

dấu bằng xảy ra khi a = b = c = 1.

vậy S = a + b + c = 3.

6 tháng 12 2016

\(\frac{b}{bc+b+1}+\frac{a}{ab+a+1}+\frac{c}{ac+c+1}\)

\(=\frac{ac.b}{ac\left(bc+b+1\right)}+\frac{c.a}{c\left(ab+a+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{1}{c+1+ac}+\frac{ac}{1+ac+c}+\frac{c}{ac+c+1}=1\)

7 tháng 12 2016

a= b+c=a : b=a+c; c= a=b voi nhung bai nhan chia cung vay

28 tháng 3 2017

cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

4 tháng 2 2017

1)\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)

=>\(\frac{x-b-c}{a}-1+\frac{x-c-a}{b}-1+\frac{x-a-b}{c}-1=0\)

=>\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)

=>\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

Nếu x - a -b -c = 0 => phương trình có nghiệm duy nhất x = a + b + c

Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)=> Phương trình có vô số nghiệm x thuộc R

4 tháng 2 2017

Bùi Vũ Kim Thư nếu mà bn ko hiểu thì cứ hỏi nhae haha

21 tháng 12 2018

\(\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{1+ac+c}\)

\(\frac{b}{bc+b+1}=\frac{abc}{acbc+acb+ac}=\frac{1}{c+1+ac}\)

\(\Leftrightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)

p/s: cộng lại chỉ = 1 thui >: có sai đề ko vại ?????????

21 tháng 12 2018

À nhầm đề nhé, cho mình xin lỗi, phải thế này mới đúng:

Cho abc = 1.

CMR: \(\frac{a}{ab+a+1}\)\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)= 3