\(a^2+b^2+c^2\ge3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)

Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)

Thiết lập hai bđt còn lại tương tự và cộng theo vế:

\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)

Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)

Đến đây chưa nghĩ ra =((

2 tháng 2 2019

Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v

Lời giải:

\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c  > 0 tức là abc > 0)

Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)

Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)

\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)

Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)

\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)

Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

18 tháng 10 2016

Trước hết bạn chứng minh :  \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\) (Chứng minh bằng biến đổi tương đương)

Áp dụng BĐT AM-GM ta có : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{9}{6-\left(a+b+c\right)}\ge\frac{9}{6-\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{9}{6-3}=3\)

18 tháng 10 2016

Dễ thấy \(0< a,b,c< 2\)

Ta có:

\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\Leftrightarrow a\left(a-1\right)^2\ge0\)

Tương tự với các cái tương tự, ta được:

\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\)(Đpcm)

Dấu = khi a=b=c=1

12 tháng 8 2020

Bất đẳng thức sai với [a = 35/256, b = 5/16, c = 3921/1840 ]

1 tháng 8 2019

Dùng bđt Cosy nha mn!

1 tháng 8 2019

#)Giải :

Đặt \(\hept{\begin{cases}\frac{ab}{c}=x\\\frac{bc}{a}=y\\\frac{ca}{b}=z\end{cases}\Rightarrow\hept{\begin{cases}a^2=xz\\b^2=xy\\c^2=yz\end{cases}}\Rightarrow xy+yz+xz=3}\)

Theo hệ quả của BĐT Cauchy :

\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=9\)

\(\Rightarrow x+y+z\ge3\) hay \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge3\left(đpcm\right)\)

Dấu ''='' xảy ra \(\Leftrightarrow\) a = b = c = 1

7 tháng 1 2018

Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)

\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)

\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)

\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)

Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)

Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)

Do\(1\ge a,b,c\ge0\)

\(\Rightarrow b\ge b^2,c\ge c^3\)

Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)

Vì \(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà \(abc\ge0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2) 

Từ (1) và (2) => đpcm