K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\sqrt{x^2-4x+4}=3x+1\)

=>\(\sqrt{\left(x-2\right)^2}=3x+1\)

=>|x-2|=3x+1

=>\(\begin{cases}3x+1\ge0\\ \left(3x+1\right)^2=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ \left(3x+1-x+2\right)\left(3x+1+x-2\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac13\\ \left(2x+3\right)\left(4x-1\right)=0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\in\left\lbrace-\frac32;\frac14\right\rbrace\end{cases}\)

=>\(x=\frac14\)

b:

ĐKXĐ: \(x^2-4x+1\ge0\)

=>\(x^2-4x+4-3\ge0\)

=>\(\left(x-2\right)^2\ge3\)

=>\(\left[\begin{array}{l}x-2\ge\sqrt3\\ x-2\le-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge2+\sqrt3\\ x\le2-\sqrt3\end{array}\right.\)

\(\sqrt{x^2-4x+1}=x\)

=>\(\begin{cases}x\ge0\\ x^2-4x+1=x^2\end{cases}\Rightarrow\begin{cases}x\ge0\\ -4x+1=0\end{cases}\Rightarrow x=\frac14\)

c: \(\sqrt{x^2-2x+5}=x+3\)

=>\(\begin{cases}x+3\ge0\\ x^2-2x+5=\left(x+3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-3\\ x^2+6x+9=x^2-2x+5\end{cases}\)

=>\(\begin{cases}x\ge-3\\ x^2+6x+9-x^2+2x-5=0\end{cases}\Rightarrow\begin{cases}x\ge-3\\ 8x+4=0\end{cases}\Rightarrow x=-\frac12\)

d: \(\sqrt{x^2-10x+25}-2x=3\)

=>\(\sqrt{\left(x-5\right)^2}=2x+3\)

=>|x-5|=2x+3

=>\(\begin{cases}2x+3\ge0\\ \left(2x+3\right)^2=\left(x-5\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac32\\ \left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac32\\ \left(x+8\right)\left(3x-2\right)=0\end{cases}\Rightarrow x=\frac23\)

e:

ĐKXĐ: \(\left[\begin{array}{l}x\ge3\\ x\le1\end{array}\right.\)

\(\sqrt{x^2-4x+3}=x-2\)

=>\(\begin{cases}x-2\ge0\\ x^2-4x+3=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge2\\ x^2-4x+3=x^2-4x+4\end{cases}\)

=>x∈∅

f: \(\sqrt{x^2-6x+9}=2x-1\)

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>|x-3|=2x-1

=>\(\begin{cases}2x-1\ge0\\ \left(2x-1\right)^2=\left(x-3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge\frac12\\ \left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\end{cases}\)

=>\(\begin{cases}x\ge\frac12\\ \left(x+2\right)\left(3x-4\right)=0\end{cases}\Rightarrow x=\frac43\)

28 tháng 7 2017

\(A=\frac{3\left(x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{3x+3\sqrt{x}-3-x+2\sqrt{x}-1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

b) \(x=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)

\(\sqrt{x}=1+\sqrt{2}\)

ý b tự thay vào nha

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)