Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công suất tiêu thụ của mạch: \(P=\frac{U^2\cos^2\varphi}{R}\)
+ Ban đầu: \(P_1=\frac{U^2.\cos^230^0}{R}=\frac{3U^2}{4R}\)
+ Khi u cùng pha với i thì: \(P_2=\frac{U^2}{R}\)
Suy ra: \(\frac{P_1}{P_2}=\frac{3}{4}\)
\(\Rightarrow P_2=\frac{4}{3}.24=32W\)
Chọn đáp án B
Cường độ dòng điện tức thời qua tụ: \(i=\frac{\Delta q}{\Delta t}=C\frac{\Delta u}{\Delta t}\)
Do 2 tụ mắc song song nên điện áp tức thời 2 đầu mỗi tụ như nhau. Do vậy \(\frac{i_1}{i_2}=\frac{C_1}{C_2}=\frac{1}{2}\Rightarrow i_2=2i_1=2.0,04=0,08A\).
Cường độ dòng điện qua cuộn cảm là: i=i1+i2=0,04+0,08=0,12A
Do năng lượng của tụ: \(W_đ=\frac{1}{2}C.u^2\), nên năng lượng điện tỉ lệ với điện dung C.
Do đó, năng lượng của tụ C1 là: 13,5.10-6 / 2 = 6,75.10-6 (J)
Năng lượng điện của mạch: W = 13,5.10−6+6,75.10-6 =20,25.10-6
Năng lượng điện từ của mạch: \(W=W_đ+W_t=W_{tmax}\Rightarrow 20,25.10^{-6}+\frac{1}{2}.5.10^{-3}.(0,12)^2=\frac{1}{2}.5.10^{-3}.I_0^2\)
=>\(I_0=0,15A\)
Đáp án D
Với bài toán dạng này, khi áp dụng định lý biến thiên cơ năng chúng ta thường lấy gần đúng là vật dừng lại ở VTCB, khi đó cơ năng lúc sau = 0.
Nhưng nếu tính một cách chính xác thì không phải, vật dừng lại khi hợp lực tác dụng lên nó = 0, lúc đó Fđh = Fms, ta giả sử vật dừng lại ở li đô x thì: \(k.x=\mu mg\Rightarrow x=\frac{\mu mg}{k}\)
Lúc đó, công thức biến thiên cơ năng phải là: \(\frac{1}{2}k.A^2-\frac{1}{2}k.\left(\frac{\mu mg}{k}\right)^2=\mu mg.S\)
Từ đó, bạn rút ra S.
\(i_1 = \frac{\lambda_1D_1}{a}\)
\(i_2 = \frac{\lambda_2D_2}{a}\)
=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)
=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))
=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)
Chọn đáp án.A
Đáp án : Cối xay
HT
Cối xay