Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét p = 2 và p = 3 ta thấy không thỏa mãn
Xét p = 5 ta thấy thỏa mãn
Xét p > 5 thì p chia 5 dư 1,2,3,4
Nếu p = 5k + 1 thì p + 14 = 5k + 15 (loại)
Nếu p = 5k + 2 thì p + 18 = 5k + 20 (loại)
Nếu p = 5k + 3 thì p + 2 = 5k + 5 (loại)
Nếu p = 5k + 4 thì p + 6 = 5k + 10(loại)
Vậy p = 5
TL:
Xét p = 2 và p = 3 ta thấy không thỏa mãn
Xét p = 5 ta thấy thỏa mãn
Xét p > 5 thì p chia 5 dư 1,2,3,4
Nếu p = 5k + 1 thì p + 14 = 5k + 15 (loại)
Nếu p = 5k + 2 thì p + 18 = 5k + 20 (loại)
Nếu p = 5k + 3 thì p + 2 = 5k + 5 (loại)
Nếu p = 5k + 4 thì p + 6 = 5k + 10(loại)
Vậy p = 5
^HT^
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
a) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Vì pp, qq là số nguyên tố, mà pq+11pq+11 cũng là số nguyên tố
⇒ pqpq chẵn
Giả sử p=2p=2
⇒ 7p+q=14+q7p+q=14+q
⇒ qq lẽ
⇒ q=3;3k+1;3k+2q=3;3k+1;3k+2
Nếu q=3q=3 thì 14+3=1714+3=17 là số nguyên tố
2.3+11=172.3+11=17 là số nguyên tố
⇒ Thỏa mãn
Nếu q=3k+1q=3k+1 thì 14+3k+1=15+3k=3.(5+k)14+3k+1=15+3k=3.(5+k)⋮ 33
⇒ Không thỏa mãn
Nếu q=3k+2q=3k+2 thì 2.(3k+2)+11=2.3k+15=3.(2k+5)2.(3k+2)+11=2.3k+15=3.(2k+5)⋮ 33
⇒ Không thỏa mãn
⇒ p=2;q=3p=2;q=3
Giả sử q=2q=2
⇒ pp lẽ vì 7p+27p+2 là số nguyên tố lớn hơn 33
⇒ p=3;3k+1;3k+2p=3;3k+1;3k+2
Nếu p=3p=3 thì 7.3+2=237.3+2=23 là số nguyên tố
2.3+11=172.3+11=17 là số nguyên tố
⇒ Thỏa mãn
Nếu p=3k+1p=3k+1 thì 7.(3k+1)+2=7.3k+9=3.(7k+3)7.(3k+1)+2=7.3k+9=3.(7k+3)⋮ 33
⇒ Không thỏa mãn
Nếu p=3k+2p=3k+2 thì $2.(3k+2)+11=2.3k+15= 3.(2k+5)$⋮ 33
⇒ Không thỏa mãn
⇒ p=3;q=2
a,a, p có dạng 3k+1;3k+2 hoặc 3k
TH1:p=3k+1⇒p+14=3k+1+14=3k+15⋮3(loại)TH2:p=3k+2⇒p+10=3k+12⋮3(loại)TH3:p=3k⇒p+10=3k+10(chọn)⇒p+14=3k+14(chọn)TH1:p=3k+1⇒p+14=3k+1+14=3k+15⋮3(loại)TH2:p=3k+2⇒p+10=3k+12⋮3(loại)TH3:p=3k⇒p+10=3k+10(chọn)⇒p+14=3k+14(chọn)
Vậy p có dạng 3k thỏa mãn
⇒p=3⇒p=3
Bạn làm tương tự với câu b nha
a) Vì 132 là số chẵn =>132 là tổng của 3 số nguyên tố =>1 trong 3 số phải la số chẵn => số chẵn đó bằng 2 mà là số ntố nhỏ nhất nên số nhỏ nhất đó là 2.
c)xét trường hợp p=2=> p+10=12 là hợp số loại
Xét trường hợp p= 3=> p+10= 13;p+20=23 đều là hợp số.
Xét trường hợp p>3 => p có 1 trong 2 dạng 3k+1;3k-1
với p= 3k +1=> p+20= 3k+21 chia hết cho 3
với p=3k-1=> p+10= 3k+9 chia hết cho 3
vậy p=3 thì p+10;p+20 đều là số ntố.
ta có :
\(A=21.13-5.26=13\times\left(21-5\times2\right)\) chia hết cho 13 và lớn hơn 13
nên A là hợp số.
\(B=abcabc+7=abc\times1001+7=7\times\left(143\times abc+1\right)\) lớn hơn 7 và chia hết cho 7
nên B là hợp số
a) Các số nguyên tố nhỏ hơn 30 là:
2; 3; 5; 7; 11; 13; 17; 19; 23; 29.
b) Trước tiên ta tìm các ước của số 91 bằng cách lấy 91 lần lượt chia cho các số tự nhiên từ 1 đến 91, ta được các ước của 91 là: 1; 7; 13; 91, trong đó có 7 và 13 là các số nguyên tố.
Vậy các ước nguyên tố của 91 là: 7 và 13.
Do đó ta trả lời: "Một ước nguyên tố của 91 là 7" hoặc "Một ước nguyên tố của 91 là 13".
a = {2;3;5;7;11;13;17;19;23;29}
b = ...
c = SGK tự tìm